Zhou Yi, Duan Yayang, Zhu Qiwei, Li Siyao, Liu Xiaoling, Cheng Ting, Cheng Dongliang, Shi Yuanyin, Zhang Jingshu, Yang Jinyan, Zheng Yanyan, Gao Chuanfen, Wang Junli, Cao Yunxia, Zhang Chaoxue
Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Shushan District, NO.218 Jixi Road, Hefei, 230022, Anhui Province, China.
Department of Ultrasound, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.
Radiol Med. 2025 Apr 1. doi: 10.1007/s11547-025-02006-x.
This study aims to evaluate the effectiveness of combining transvaginal ultrasound (US)-based radiomics and deep learning model for the accurate differentiation between benign and malignant ovarian tumors in large-scale studies.
A multicenter retrospective study collected grayscale and color US images of ovarian tumors. Patients were divided into training, internal, and external validation groups. Models including a convolutional neural networks (CNN), optimal radiomics, and a combined model were constructed and evaluated for predictive performance using area under curve (AUC), sensitivity, and specificity. The DeLong test compared model AUCs with O-RADS and expert assessments.
3193 images from 2078 patients were analyzed. The CNN achieved AUCs of 0.970 (internal) and 0.959 (external), respectively. Optimal radiomic model achieved AUCs of 0.949 (internal) and 0.954 (external), respectively. The combined CNN-radiomics model attained the highest AUC of 0.977 (internal) and 0.972 (external), respectively, outperforming individual models, O-RADS, and expert methods (p < 0.05).
The combined CNN-radiomics model using transvaginal US images provides more accurate and reliable ovarian tumor diagnosis, enhancing malignancy prediction and offering clinicians a more precise diagnostic tool.
本研究旨在评估基于经阴道超声(US)的放射组学与深度学习模型相结合在大规模研究中对卵巢良恶性肿瘤进行准确鉴别的有效性。
一项多中心回顾性研究收集了卵巢肿瘤的灰度和彩色US图像。患者被分为训练组、内部验证组和外部验证组。构建了包括卷积神经网络(CNN)、最佳放射组学模型和联合模型在内的模型,并使用曲线下面积(AUC)、敏感性和特异性对预测性能进行评估。DeLong检验将模型的AUC与O-RADS及专家评估进行比较。
分析了来自2078例患者的3193张图像。CNN在内部验证组和外部验证组的AUC分别为0.970和0.959。最佳放射组学模型在内部验证组和外部验证组的AUC分别为0.949和0.954。联合的CNN-放射组学模型在内部验证组和外部验证组分别获得了最高的AUC,即0.977和0.972,优于单个模型、O-RADS和专家方法(p < 0.05)。
使用经阴道US图像的联合CNN-放射组学模型可提供更准确可靠的卵巢肿瘤诊断,提高恶性肿瘤预测能力,为临床医生提供更精确的诊断工具。