Suppr超能文献

用于卵巢肿瘤分类和诊断的整合深度学习与放射组学分析:一项多中心大样本比较研究

Integrative deep learning and radiomics analysis for ovarian tumor classification and diagnosis: a multicenter large-sample comparative study.

作者信息

Zhou Yi, Duan Yayang, Zhu Qiwei, Li Siyao, Liu Xiaoling, Cheng Ting, Cheng Dongliang, Shi Yuanyin, Zhang Jingshu, Yang Jinyan, Zheng Yanyan, Gao Chuanfen, Wang Junli, Cao Yunxia, Zhang Chaoxue

机构信息

Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, Shushan District, NO.218 Jixi Road, Hefei, 230022, Anhui Province, China.

Department of Ultrasound, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui Province, China.

出版信息

Radiol Med. 2025 Apr 1. doi: 10.1007/s11547-025-02006-x.

Abstract

PURPOSE

This study aims to evaluate the effectiveness of combining transvaginal ultrasound (US)-based radiomics and deep learning model for the accurate differentiation between benign and malignant ovarian tumors in large-scale studies.

MATERIALS AND METHODS

A multicenter retrospective study collected grayscale and color US images of ovarian tumors. Patients were divided into training, internal, and external validation groups. Models including a convolutional neural networks (CNN), optimal radiomics, and a combined model were constructed and evaluated for predictive performance using area under curve (AUC), sensitivity, and specificity. The DeLong test compared model AUCs with O-RADS and expert assessments.

RESULTS

3193 images from 2078 patients were analyzed. The CNN achieved AUCs of 0.970 (internal) and 0.959 (external), respectively. Optimal radiomic model achieved AUCs of 0.949 (internal) and 0.954 (external), respectively. The combined CNN-radiomics model attained the highest AUC of 0.977 (internal) and 0.972 (external), respectively, outperforming individual models, O-RADS, and expert methods (p < 0.05).

CONCLUSIONS

The combined CNN-radiomics model using transvaginal US images provides more accurate and reliable ovarian tumor diagnosis, enhancing malignancy prediction and offering clinicians a more precise diagnostic tool.

摘要

目的

本研究旨在评估基于经阴道超声(US)的放射组学与深度学习模型相结合在大规模研究中对卵巢良恶性肿瘤进行准确鉴别的有效性。

材料与方法

一项多中心回顾性研究收集了卵巢肿瘤的灰度和彩色US图像。患者被分为训练组、内部验证组和外部验证组。构建了包括卷积神经网络(CNN)、最佳放射组学模型和联合模型在内的模型,并使用曲线下面积(AUC)、敏感性和特异性对预测性能进行评估。DeLong检验将模型的AUC与O-RADS及专家评估进行比较。

结果

分析了来自2078例患者的3193张图像。CNN在内部验证组和外部验证组的AUC分别为0.970和0.959。最佳放射组学模型在内部验证组和外部验证组的AUC分别为0.949和0.954。联合的CNN-放射组学模型在内部验证组和外部验证组分别获得了最高的AUC,即0.977和0.972,优于单个模型、O-RADS和专家方法(p < 0.05)。

结论

使用经阴道US图像的联合CNN-放射组学模型可提供更准确可靠的卵巢肿瘤诊断,提高恶性肿瘤预测能力,为临床医生提供更精确的诊断工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验