Department of Ultrasound, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China.
J Obstet Gynaecol Res. 2023 Dec;49(12):2910-2917. doi: 10.1111/jog.15788. Epub 2023 Sep 11.
OBJECTIVE: To develop deep learning (DL) prediction models using transvaginal ultrasound (TVS), transabdominal ultrasound (TAS), and color Doppler flow imaging (CDFI) of TVS (CDFI_TVS) to automatically predict benign or malignant ovarian tumors. METHODS: This retrospective study included women with ovarian tumors who underwent ultrasound between August 2018 and October 2022. Histopathological analysis was used as a reference standard. The dataset was preprocessed by clipping, flipping, and rotating images to generate a larger, more complicated, and diverse dataset to improve accuracy and generalizability. The dataset was then divided into training (80%) and test (20%) sets. The weights of the models, modified from the residual network (ResNet) with the TVS, TAS, and CDFI_TVS images (hereafter, referred to as DL , DL , and DL , respectively) were developed. The area under the receiver operating characteristic curve (AUC) analysis in the test set was used to compare the predictive value of DL for malignancy. RESULTS: A total of 2340 images from 1350 women with adnexal masses were included. DL had an AUC of 0.95 (95% CI: 0.93-0.97) for classifying malignant and benign ovarian tumors, comparable with that of DL (AUC, 0.95; 95% CI: 0.91-0.98; p = 0.96) and DL (AUC, 0.88; 95% CI: 0.84-0.93; p = 0.02). Decision curve analysis indicated that DL performed better than DL and DL . CONCLUSION: We developed DL models based on TVS, TAS, and CDFI_TVS on ultrasound images to predict benign and malignant ovarian tumors with high diagnostic performance. The DL model had the best prediction compared with the DL and DL models.
目的:利用经阴道超声(TVS)、经腹部超声(TAS)和 TVS 的彩色多普勒血流成像(CDFI_TVS)开发深度学习(DL)预测模型,以自动预测良性或恶性卵巢肿瘤。
方法:本回顾性研究纳入了 2018 年 8 月至 2022 年 10 月间接受超声检查的卵巢肿瘤女性患者。组织病理学分析被用作参考标准。通过裁剪、翻转和旋转图像对数据集进行预处理,以生成更大、更复杂和更多样化的数据集,从而提高准确性和泛化能力。数据集随后被分为训练集(80%)和测试集(20%)。对模型的权重进行开发,这些模型是对带有 TVS、TAS 和 CDFI_TVS 图像的残差网络(ResNet)进行修改得到的(以下分别简称为 DL、DL 和 DL)。在测试集中使用接受者操作特征曲线下面积(AUC)分析来比较 DL 对恶性肿瘤的预测价值。
结果:共纳入了 1350 名附件包块女性患者的 2340 张图像。DL 对良恶性卵巢肿瘤的分类具有 0.95(95%CI:0.93-0.97)的 AUC,与 DL(AUC,0.95;95%CI:0.91-0.98;p=0.96)和 DL(AUC,0.88;95%CI:0.84-0.93;p=0.02)相当。决策曲线分析表明,DL 比 DL 和 DL 表现更好。
结论:我们基于 TVS、TAS 和 CDFI_TVS 超声图像开发了 DL 模型,用于预测良性和恶性卵巢肿瘤,具有较高的诊断性能。与 DL 和 DL 模型相比,DL 模型具有最佳预测能力。
J Obstet Gynaecol Res. 2023-12
Ultrasound Obstet Gynecol. 2019-11-11
Ultrasound Obstet Gynecol. 2019-8-8
Ultrasound Obstet Gynecol. 2023-12
Int J Mol Sci. 2024-11-6
Sensors (Basel). 2024-5-26