文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于超声图像的 Resnet34 预测卵巢良恶性肿瘤

Prediction of benign and malignant ovarian tumors using Resnet34 on ultrasound images.

机构信息

Department of Ultrasound, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.

Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China.

出版信息

J Obstet Gynaecol Res. 2023 Dec;49(12):2910-2917. doi: 10.1111/jog.15788. Epub 2023 Sep 11.


DOI:10.1111/jog.15788
PMID:37696522
Abstract

OBJECTIVE: To develop deep learning (DL) prediction models using transvaginal ultrasound (TVS), transabdominal ultrasound (TAS), and color Doppler flow imaging (CDFI) of TVS (CDFI_TVS) to automatically predict benign or malignant ovarian tumors. METHODS: This retrospective study included women with ovarian tumors who underwent ultrasound between August 2018 and October 2022. Histopathological analysis was used as a reference standard. The dataset was preprocessed by clipping, flipping, and rotating images to generate a larger, more complicated, and diverse dataset to improve accuracy and generalizability. The dataset was then divided into training (80%) and test (20%) sets. The weights of the models, modified from the residual network (ResNet) with the TVS, TAS, and CDFI_TVS images (hereafter, referred to as DL , DL , and DL , respectively) were developed. The area under the receiver operating characteristic curve (AUC) analysis in the test set was used to compare the predictive value of DL for malignancy. RESULTS: A total of 2340 images from 1350 women with adnexal masses were included. DL had an AUC of 0.95 (95% CI: 0.93-0.97) for classifying malignant and benign ovarian tumors, comparable with that of DL (AUC, 0.95; 95% CI: 0.91-0.98; p = 0.96) and DL (AUC, 0.88; 95% CI: 0.84-0.93; p = 0.02). Decision curve analysis indicated that DL performed better than DL and DL . CONCLUSION: We developed DL models based on TVS, TAS, and CDFI_TVS on ultrasound images to predict benign and malignant ovarian tumors with high diagnostic performance. The DL model had the best prediction compared with the DL and DL models.

摘要

目的:利用经阴道超声(TVS)、经腹部超声(TAS)和 TVS 的彩色多普勒血流成像(CDFI_TVS)开发深度学习(DL)预测模型,以自动预测良性或恶性卵巢肿瘤。

方法:本回顾性研究纳入了 2018 年 8 月至 2022 年 10 月间接受超声检查的卵巢肿瘤女性患者。组织病理学分析被用作参考标准。通过裁剪、翻转和旋转图像对数据集进行预处理,以生成更大、更复杂和更多样化的数据集,从而提高准确性和泛化能力。数据集随后被分为训练集(80%)和测试集(20%)。对模型的权重进行开发,这些模型是对带有 TVS、TAS 和 CDFI_TVS 图像的残差网络(ResNet)进行修改得到的(以下分别简称为 DL、DL 和 DL)。在测试集中使用接受者操作特征曲线下面积(AUC)分析来比较 DL 对恶性肿瘤的预测价值。

结果:共纳入了 1350 名附件包块女性患者的 2340 张图像。DL 对良恶性卵巢肿瘤的分类具有 0.95(95%CI:0.93-0.97)的 AUC,与 DL(AUC,0.95;95%CI:0.91-0.98;p=0.96)和 DL(AUC,0.88;95%CI:0.84-0.93;p=0.02)相当。决策曲线分析表明,DL 比 DL 和 DL 表现更好。

结论:我们基于 TVS、TAS 和 CDFI_TVS 超声图像开发了 DL 模型,用于预测良性和恶性卵巢肿瘤,具有较高的诊断性能。与 DL 和 DL 模型相比,DL 模型具有最佳预测能力。

相似文献

[1]
Prediction of benign and malignant ovarian tumors using Resnet34 on ultrasound images.

J Obstet Gynaecol Res. 2023-12

[2]
Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: comparison with expert subjective assessment.

Ultrasound Obstet Gynecol. 2021-1

[3]
Deep Learning Prediction of Ovarian Malignancy at US Compared with O-RADS and Expert Assessment.

Radiology. 2022-7

[4]
Adnexal masses difficult to classify as benign or malignant using subjective assessment of gray-scale and Doppler ultrasound findings: logistic regression models do not help.

Ultrasound Obstet Gynecol. 2011-9-13

[5]
Performance of IOTA ADNEX model in evaluating adnexal masses in a gynecological oncology center in China.

Ultrasound Obstet Gynecol. 2019-11-11

[6]
New sonographic marker of borderline ovarian tumor: microcystic pattern of papillae and solid components.

Ultrasound Obstet Gynecol. 2019-8-8

[7]
The Diagnostic Value of Transvaginal Sonograph (TVS), Color Doppler, and Serum Tumor Marker CA125, CEA, and AFP in Ovarian Cancer.

Cell Biochem Biophys. 2015-6

[8]
Estimating risk of malignancy in adnexal masses: external validation of the ADNEX model and comparison with other frequently used ultrasound methods.

Ultrasound Obstet Gynecol. 2017-6

[9]
Vessel morphology depicted by three-dimensional power Doppler ultrasound as second-stage test in adnexal tumors that are difficult to classify: prospective diagnostic accuracy study.

Ultrasound Obstet Gynecol. 2021-2

[10]
Characterization of adnexal lesions using photoacoustic imaging to improve sonographic O-RADS risk assessment.

Ultrasound Obstet Gynecol. 2023-12

引用本文的文献

[1]
Development and Validation of Differential Diagnosis Models and Nomograms Based on Serum D-Dimer and Other Multimodal Information for Borderline and Benign Epithelial Ovarian Tumors: A Multicenter Study.

Diagnostics (Basel). 2025-8-14

[2]
Future theranostic strategies: emerging ovarian cancer biomarkers to bridge the gap between diagnosis and treatment.

Front Drug Deliv. 2024-2-1

[3]
MRI-based Ovarian Lesion Classification via a Foundation Segmentation Model and Multimodal Analysis: A Multicenter Study.

Radiology. 2025-8

[4]
Artificial Intelligence in Ultrasound-Based Diagnoses of Gynecological Tumors: A Systematic Review.

Cureus. 2025-6-12

[5]
Integrative deep learning and radiomics analysis for ovarian tumor classification and diagnosis: a multicenter large-sample comparative study.

Radiol Med. 2025-4-1

[6]
Development and validation of a deep learning pipeline to diagnose ovarian masses using ultrasound screening: a retrospective multicenter study.

EClinicalMedicine. 2024-11-19

[7]
Folate Receptor Alpha-A Secret Weapon in Ovarian Cancer Treatment?

Int J Mol Sci. 2024-11-6

[8]
Cervical Spondylosis Diagnosis Based on Convolutional Neural Network with X-ray Images.

Sensors (Basel). 2024-5-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索