Department of Ultrasound, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China.
J Obstet Gynaecol Res. 2023 Dec;49(12):2910-2917. doi: 10.1111/jog.15788. Epub 2023 Sep 11.
To develop deep learning (DL) prediction models using transvaginal ultrasound (TVS), transabdominal ultrasound (TAS), and color Doppler flow imaging (CDFI) of TVS (CDFI_TVS) to automatically predict benign or malignant ovarian tumors.
This retrospective study included women with ovarian tumors who underwent ultrasound between August 2018 and October 2022. Histopathological analysis was used as a reference standard. The dataset was preprocessed by clipping, flipping, and rotating images to generate a larger, more complicated, and diverse dataset to improve accuracy and generalizability. The dataset was then divided into training (80%) and test (20%) sets. The weights of the models, modified from the residual network (ResNet) with the TVS, TAS, and CDFI_TVS images (hereafter, referred to as DL , DL , and DL , respectively) were developed. The area under the receiver operating characteristic curve (AUC) analysis in the test set was used to compare the predictive value of DL for malignancy.
A total of 2340 images from 1350 women with adnexal masses were included. DL had an AUC of 0.95 (95% CI: 0.93-0.97) for classifying malignant and benign ovarian tumors, comparable with that of DL (AUC, 0.95; 95% CI: 0.91-0.98; p = 0.96) and DL (AUC, 0.88; 95% CI: 0.84-0.93; p = 0.02). Decision curve analysis indicated that DL performed better than DL and DL .
We developed DL models based on TVS, TAS, and CDFI_TVS on ultrasound images to predict benign and malignant ovarian tumors with high diagnostic performance. The DL model had the best prediction compared with the DL and DL models.
利用经阴道超声(TVS)、经腹部超声(TAS)和 TVS 的彩色多普勒血流成像(CDFI_TVS)开发深度学习(DL)预测模型,以自动预测良性或恶性卵巢肿瘤。
本回顾性研究纳入了 2018 年 8 月至 2022 年 10 月间接受超声检查的卵巢肿瘤女性患者。组织病理学分析被用作参考标准。通过裁剪、翻转和旋转图像对数据集进行预处理,以生成更大、更复杂和更多样化的数据集,从而提高准确性和泛化能力。数据集随后被分为训练集(80%)和测试集(20%)。对模型的权重进行开发,这些模型是对带有 TVS、TAS 和 CDFI_TVS 图像的残差网络(ResNet)进行修改得到的(以下分别简称为 DL、DL 和 DL)。在测试集中使用接受者操作特征曲线下面积(AUC)分析来比较 DL 对恶性肿瘤的预测价值。
共纳入了 1350 名附件包块女性患者的 2340 张图像。DL 对良恶性卵巢肿瘤的分类具有 0.95(95%CI:0.93-0.97)的 AUC,与 DL(AUC,0.95;95%CI:0.91-0.98;p=0.96)和 DL(AUC,0.88;95%CI:0.84-0.93;p=0.02)相当。决策曲线分析表明,DL 比 DL 和 DL 表现更好。
我们基于 TVS、TAS 和 CDFI_TVS 超声图像开发了 DL 模型,用于预测良性和恶性卵巢肿瘤,具有较高的诊断性能。与 DL 和 DL 模型相比,DL 模型具有最佳预测能力。