Department of Pathology, University Hospital of Nantes, Nantes, France.
Laboratoire du Traitement du Signal et de l'Image - Inserm U1099, University of Rennes, Rennes, France.
Mod Pathol. 2023 Nov;36(11):100304. doi: 10.1016/j.modpat.2023.100304. Epub 2023 Aug 12.
BRCA1 and BRCA2 genes play a crucial role in repairing DNA double-strand breaks through homologous recombination. Their mutations represent a significant proportion of homologous recombination deficiency and are a reliable effective predictor of sensitivity of high-grade ovarian cancer (HGOC) to poly(ADP-ribose) polymerase inhibitors. However, their testing by next-generation sequencing is costly and time-consuming and can be affected by various preanalytical factors. In this study, we present a deep learning classifier for BRCA mutational status prediction from hematoxylin-eosin-safran-stained whole slide images (WSI) of HGOC. We constituted the OvarIA cohort composed of 867 patients with HGOC with known BRCA somatic mutational status from 2 different pathology departments. We first developed a tumor segmentation model according to dynamic sampling and then trained a visual representation encoder with momentum contrastive learning on the predicted tumor tiles. We finally trained a BRCA classifier on more than a million tumor tiles in multiple instance learning with an attention-based mechanism. The tumor segmentation model trained on 8 WSI obtained a dice score of 0.915 and an intersection-over-union score of 0.847 on a test set of 50 WSI, while the BRCA classifier achieved the state-of-the-art area under the receiver operating characteristic curve of 0.739 in 5-fold cross-validation and 0.681 on the testing set. An additional multiscale approach indicates that the relevant information for predicting BRCA mutations is located more in the tumor context than in the cell morphology. Our results suggest that BRCA somatic mutations have a discernible phenotypic effect that could be detected by deep learning and could be used as a prescreening tool in the future.
BRCA1 和 BRCA2 基因在通过同源重组修复 DNA 双链断裂方面发挥着关键作用。它们的突变代表了同源重组缺陷的很大一部分,并且是高级卵巢癌(HGOC)对聚(ADP-核糖)聚合酶抑制剂敏感性的可靠有效预测因子。然而,下一代测序的检测既昂贵又耗时,并且可能受到各种分析前因素的影响。在这项研究中,我们提出了一种基于深度学习的分类器,用于从 HGOC 的苏木精-伊红-固绿-番红染色全切片图像(WSI)中预测 BRCA 突变状态。我们构建了 OvarIA 队列,该队列由来自 2 个不同病理部门的 867 名具有已知 BRCA 体细胞突变状态的 HGOC 患者组成。我们首先根据动态采样开发了一种肿瘤分割模型,然后在预测的肿瘤块上使用具有动量对比学习的视觉表示编码器进行训练。我们最后在多个实例学习中使用基于注意力的机制,在超过一百万的肿瘤块上训练 BRCA 分类器。在 8 个 WSI 上训练的肿瘤分割模型在 50 个 WSI 的测试集中获得了 0.915 的骰子分数和 0.847 的交并比分数,而 BRCA 分类器在 5 折交叉验证中达到了 0.739 的最新接收者操作特征曲线下面积,在测试集上为 0.681。额外的多尺度方法表明,用于预测 BRCA 突变的相关信息更多地位于肿瘤背景中,而不是在细胞形态中。我们的结果表明,BRCA 体细胞突变具有可通过深度学习检测到的明显表型效应,并且将来可以用作预筛选工具。