Eastman Brent, Tabuchi Nobuko, Zhang Xinrui L, Spencer William C, Deneris Evan S
Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2411716122. doi: 10.1073/pnas.2411716122. Epub 2025 Apr 1.
Pathogenic coding mutations are prevalent in human neuronal transcription factors (TFs) but how they disrupt development is poorly understood. Lmx1b is a master transcriptional regulator of postmitotic neurons that give rise to mature serotonin (5-HT) neurons; over two hundred pathogenic heterozygous mutations have been discovered in human yet their impact on brain development has not been investigated. Here, we developed mouse models with different DNA-binding missense mutations. Missense heterozygosity broadly altered neuron transcriptomes, but expression changes converged on axon and synapse genes. Missense heterozygosity effected highly specific deficits in the postnatal maturation of forebrain serotonin axon arbors, primarily in the hippocampus and motor cortex, which was associated with spatial memory defects. Digital genomic footprinting (DGF) revealed that missense heterozygosity caused complete loss of Lmx1b motif protection and chromatin accessibility at sites enriched for a distal active enhancer/active promoter histone signature and homeodomain binding motifs; at other bound Lmx1b motifs, varying levels of losses, gains, or no change in motif binding and accessibility were found. The spectrum of footprint changes was strongly associated with synapse and axon genes. Further, Lmx1b missense heterozygosity caused wide disruption of Lmx1b-dependent GRNs comprising diverse TFs expressed in neurons. These findings reveal an unanticipated continuum of Lmx1b missense-forced perturbations on neuron regulatory element TF binding and accessibility. Our work illustrates DGF's utility for gaining unique insight into how expressed TF missense mutations interfere with developing neuronal GRNs.
致病性编码突变在人类神经元转录因子(TFs)中很常见,但它们如何破坏发育却知之甚少。Lmx1b是有丝分裂后神经元的主要转录调节因子,这些神经元可发育为成熟的血清素(5-HT)神经元;在人类中已发现两百多种致病性杂合突变,但尚未研究它们对大脑发育的影响。在这里,我们开发了具有不同DNA结合错义突变的小鼠模型。错义杂合性广泛改变了神经元转录组,但表达变化集中在轴突和突触基因上。错义杂合性导致前脑血清素轴突分支在出生后成熟过程中出现高度特异性缺陷,主要发生在海马体和运动皮层,这与空间记忆缺陷有关。数字基因组足迹分析(DGF)显示,错义杂合性导致Lmx1b基序保护完全丧失,以及在富含远端活性增强子/活性启动子组蛋白特征和同源域结合基序的位点处染色质可及性丧失;在其他结合的Lmx1b基序处,发现基序结合和可及性有不同程度的丧失、增加或无变化。足迹变化谱与突触和轴突基因密切相关。此外,Lmx1b错义杂合性导致由神经元中表达的多种TF组成的Lmx1b依赖性基因调控网络(GRNs)受到广泛破坏。这些发现揭示了Lmx1b错义强制扰动对神经元调节元件TF结合和可及性的意外连续性。我们的工作说明了DGF在深入了解表达的TF错义突变如何干扰发育中的神经元GRNs方面的效用。