Suppr超能文献

用于预测胃肠道癌症数字病理学预后及辅助治疗获益的基础模型

Foundation Model for Predicting Prognosis and Adjuvant Therapy Benefit From Digital Pathology in GI Cancers.

作者信息

Wang Xiyue, Jiang Yuming, Yang Sen, Wang Fang, Zhang Xiaoming, Wang Wei, Chen Yijiang, Wu Xiaoyan, Xiang Jinxi, Li Yuchen, Jiang Xiaofeng, Yuan Wei, Zhang Jing, Yu Kun-Hsing, Ward Robyn L, Hawkins Nicholas, Jonnagaddala Jitendra, Li Guoxin, Li Ruijiang

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.

Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC.

出版信息

J Clin Oncol. 2025 Apr 1:JCO2401501. doi: 10.1200/JCO-24-01501.

Abstract

PURPOSE

Artificial intelligence (AI) holds significant promise for improving cancer diagnosis and treatment. Here, we present a foundation AI model for prognosis prediction on the basis of standard hematoxylin and eosin-stained histopathology slides.

METHODS

In this multinational cohort study, we developed AI models to predict prognosis from histopathology images of patients with GI cancers. First, we trained a foundation model using over 130 million patches from 104,876 whole-slide images on the basis of self-supervised learning. Second, we fine-tuned deep learning models for predicting survival outcomes and validated them across seven cohorts, including 1,619 patients with gastric and esophageal cancers and 2,594 patients with colorectal cancer. We further assessed the model for predicting survival benefit from adjuvant chemotherapy.

RESULTS

The AI models predicted disease-free survival and disease-specific survival with a concordance index of 0.726-0.797 for gastric cancer and 0.714-0.757 for colorectal cancer in the validation cohorts. The models stratified patients into high-risk and low-risk groups, with 5-year survival rates of 49%-52% versus 76%-92% in gastric cancer and 43%-72% versus 81%-98% in colorectal cancer. In multivariable analysis, the AI risk scores remained an independent prognostic factor after adjusting for clinicopathologic variables. Compared with stage alone, an integrated model consisting of stage and image information improved prognosis prediction across all validation cohorts. Finally, adjuvant chemotherapy was associated with improved survival in the high-risk group but not in the low-risk group (treatment-model interaction = .01 and .006) for stage II/III gastric and colorectal cancer, respectively.

CONCLUSION

The pathology foundation model can accurately predict survival outcomes and complement clinicopathologic factors in GI cancers. Pending prospective validation, it may be used to improve risk stratification and inform personalized adjuvant therapy.

摘要

目的

人工智能(AI)在改善癌症诊断和治疗方面具有巨大潜力。在此,我们基于标准苏木精和伊红染色的组织病理学切片,提出一种用于预后预测的基础AI模型。

方法

在这项多国队列研究中,我们开发了AI模型,以从胃肠道癌症患者的组织病理学图像预测预后。首先,我们基于自监督学习,使用来自104,876张全切片图像的超过1.3亿个图像块训练了一个基础模型。其次,我们对深度学习模型进行微调以预测生存结果,并在包括1619例胃癌和食管癌患者以及2594例结直肠癌患者的七个队列中对其进行验证。我们进一步评估了该模型预测辅助化疗生存获益的能力。

结果

在验证队列中,AI模型预测胃癌的无病生存期和疾病特异性生存期的一致性指数为0.726 - 0.797,结直肠癌为0.714 - 0.757。这些模型将患者分为高风险和低风险组,胃癌的5年生存率分别为49% - 52%和76% - 92%,结直肠癌为43% - 72%和81% - 98%。在多变量分析中,调整临床病理变量后,AI风险评分仍然是一个独立的预后因素。与单独的分期相比,由分期和图像信息组成的综合模型在所有验证队列中均改善了预后预测。最后,对于II/III期胃癌和结直肠癌,辅助化疗分别与高风险组的生存改善相关,但与低风险组无关(治疗 - 模型交互作用 = 0.01和0.006)。

结论

病理学基础模型可以准确预测胃肠道癌症的生存结果,并补充临床病理因素。在进行前瞻性验证之前,它可用于改善风险分层并为个性化辅助治疗提供依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验