Suppr超能文献

使用深度学习模型对 II/III 期结直肠癌的生存结局和辅助化疗获益进行预测的回顾性分析。

A retrospective analysis using deep-learning models for prediction of survival outcome and benefit of adjuvant chemotherapy in stage II/III colorectal cancer.

机构信息

Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, 230026, Anhui, China.

School of Population Health, UNSW Sydney, Kensington, NSW, Australia.

出版信息

J Cancer Res Clin Oncol. 2022 Aug;148(8):1955-1963. doi: 10.1007/s00432-022-03976-5. Epub 2022 Mar 24.

Abstract

PURPOSE

Most of Stage II/III colorectal cancer (CRC) patients can be cured by surgery alone, and only certain CRC patients benefit from adjuvant chemotherapy. Risk stratification based on deep-learning from haematoxylin and eosin (H&E) images has been postulated as a potential predictive biomarker for benefit from adjuvant chemotherapy. However, very limited success has been achieved in using biomarkers, including deep-learning-based markers, to facilitate the decision for adjuvant chemotherapy despite recent advances of artificial intelligence.

METHODS

We trained and internally validated CRCNet using 780 Stage II/III CRC patients from Molecular and Cellular Oncology. Independent external validation of the model was performed using 337 Stage II/III CRC patients from The Cancer Genome Atlas (TCGA).

RESULTS

CRCNet stratified the patients into high, medium, and low-risk subgroups. Multivariate Cox regression analyses confirmed that CRCNet risk groups are statistically significant after adjusting for existing risk factors. The high-risk subgroup significantly benefits from adjuvant chemotherapy. A hazard ratio (chemo-treated vs untreated) of 0.2 (95% Confidence Interval (CI), 0.05-0.65; P = 0.009) and 0.6 (95% CI 0.42-0.98; P = 0.038) are observed in the TCGA and MCO Fluorouracil-treated patients, respectively. Conversely, no significant benefit from chemotherapy is observed in the low- and medium-risk groups (P = 0.2-1).

CONCLUSION

The retrospective analysis provides further evidence that H&E image-based biomarkers may potentially be of great use in delivering treatments following surgery for Stage II/III CRC, improving patient survival, and avoiding unnecessary treatment and associated toxicity, and warrants further validation on other datasets and prospective confirmation in clinical trials.

摘要

目的

大多数 II 期/III 期结直肠癌(CRC)患者仅通过手术即可治愈,而只有某些 CRC 患者受益于辅助化疗。基于苏木精和伊红(H&E)图像的深度学习被认为是预测辅助化疗获益的潜在预测生物标志物。然而,尽管人工智能取得了最新进展,但在使用生物标志物(包括基于深度学习的标志物)来辅助辅助化疗决策方面,仅取得了非常有限的成功。

方法

我们使用来自分子和细胞肿瘤学的 780 名 II 期/III 期 CRC 患者对 CRCNet 进行了训练和内部验证。使用来自癌症基因组图谱(TCGA)的 337 名 II 期/III 期 CRC 患者对模型进行了独立的外部验证。

结果

CRCNet 将患者分为高、中、低风险亚组。多变量 Cox 回归分析证实,在调整了现有风险因素后,CRCNet 风险组具有统计学意义。高危亚组从辅助化疗中显著获益。TCGA 和 MCO 氟尿嘧啶治疗患者中观察到的化疗处理与未处理的危险比(chemo-treated vs untreated)分别为 0.2(95%置信区间(CI),0.05-0.65;P=0.009)和 0.6(95% CI 0.42-0.98;P=0.038)。相反,在低危和中危组中未观察到化疗的显著获益(P=0.2-1)。

结论

回顾性分析进一步证明,基于 H&E 图像的生物标志物可能在为 II 期/III 期 CRC 患者提供手术后治疗方面具有巨大的应用潜力,可提高患者生存率,避免不必要的治疗和相关毒性,并需要在其他数据集上进一步验证,并在临床试验中进行前瞻性确认。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验