文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习模型在胃癌病理图像分析中的应用:一项系统的范围综述。

Application of deep learning models in gastric cancer pathology image analysis: a systematic scoping review.

作者信息

Xia Sijun, Xia Yuanze, Liu Ting, Luo Yiming, Pang Patrick Cheong-Iao

机构信息

Department of Pathology, Sheyang County People's Hospital, Yancheng, 224300, Jiangsu, China.

Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China.

出版信息

BMC Cancer. 2025 Aug 1;25(1):1257. doi: 10.1186/s12885-025-14662-3.


DOI:10.1186/s12885-025-14662-3
PMID:40750872
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12317529/
Abstract

BACKGROUND: Accurate diagnosis and prognosis stratification of gastric cancer (GC) are crucial for effective treatment. However, traditional histopathological image analysis relies on the subjective judgment of pathologists, which is time-consuming and prone to errors. The emergence of deep learning (DL) models provides new ways to automate and improve the analysis of GC pathology images. This systematic review aims to evaluate the current application, challenges, and future directions of DL in GC pathology image analysis. METHODS: The study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines and searched four databases: PubMed, Scopus, Web of Science, and IEEE Xplore (as of June 19, 2025). RESULTS: The initial search identified 520 articles, and 22 studies that met the inclusion criteria were finally included. The results show that DL models have performed excellently in GC detection, histological classification, and prognosis prediction. Some models even reached an accuracy of over 95% in GC detection. Convolutional neural networks (CNN) are the most commonly used DL models. However, current studies still have limitations, such as limited dataset size, lack of external validation, and insufficient data diversity. The applicability to different types and stages of GC is also unclear. CONCLUSIONS: Future research must build larger, more diverse, and more representative datasets. These should cover a wider range of GC types and stages, and undergo rigorous clinical validation. This will help fully realize the potential of DL in GC pathology image analysis and ultimately improve clinical practice.

摘要

背景:胃癌(GC)的准确诊断和预后分层对于有效治疗至关重要。然而,传统的组织病理学图像分析依赖于病理学家的主观判断,既耗时又容易出错。深度学习(DL)模型的出现为胃癌病理图像分析的自动化和改进提供了新途径。本系统评价旨在评估DL在胃癌病理图像分析中的当前应用、挑战及未来方向。 方法:本研究遵循系统评价和范围综述的系统评价与Meta分析扩展的首选报告项目(PRISMA-ScR)指南,并检索了四个数据库:PubMed、Scopus、Web of Science和IEEE Xplore(截至2025年6月19日)。 结果:初步检索共识别出520篇文章,最终纳入22项符合纳入标准的研究。结果表明,DL模型在胃癌检测、组织学分类和预后预测方面表现出色。一些模型在胃癌检测中的准确率甚至超过了95%。卷积神经网络(CNN)是最常用的DL模型。然而,目前的研究仍存在局限性,如数据集规模有限、缺乏外部验证以及数据多样性不足。其对不同类型和阶段胃癌的适用性也不明确。 结论:未来的研究必须构建更大、更多样化且更具代表性的数据集。这些数据集应涵盖更广泛的胃癌类型和阶段,并经过严格的临床验证。这将有助于充分发挥DL在胃癌病理图像分析中的潜力,并最终改善临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/c2bc70df4470/12885_2025_14662_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/3ad6b4a8cc31/12885_2025_14662_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/6adddc4da8dc/12885_2025_14662_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/862799b343d1/12885_2025_14662_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/1f453a7b9ca6/12885_2025_14662_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/12709c7d70e4/12885_2025_14662_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/c2bc70df4470/12885_2025_14662_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/3ad6b4a8cc31/12885_2025_14662_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/6adddc4da8dc/12885_2025_14662_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/862799b343d1/12885_2025_14662_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/1f453a7b9ca6/12885_2025_14662_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/12709c7d70e4/12885_2025_14662_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58a/12317529/c2bc70df4470/12885_2025_14662_Fig6_HTML.jpg

相似文献

[1]
Application of deep learning models in gastric cancer pathology image analysis: a systematic scoping review.

BMC Cancer. 2025-8-1

[2]
Enhancing Patient Outcome Prediction Through Deep Learning With Sequential Diagnosis Codes From Structured Electronic Health Record Data: Systematic Review.

J Med Internet Res. 2025-3-18

[3]
The Use of Deep Learning and Machine Learning on Longitudinal Electronic Health Records for the Early Detection and Prevention of Diseases: Scoping Review.

J Med Internet Res. 2024-8-20

[4]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[5]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[6]
Application of artificial intelligence in the diagnosis of malignant digestive tract tumors: focusing on opportunities and challenges in endoscopy and pathology.

J Transl Med. 2025-4-9

[7]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[8]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[9]
Short-Term Memory Impairment

2025-1

[10]
Advancing respiratory disease diagnosis: A deep learning and vision transformer-based approach with a novel X-ray dataset.

Comput Biol Med. 2025-8

本文引用的文献

[1]
Foundation Model for Predicting Prognosis and Adjuvant Therapy Benefit From Digital Pathology in GI Cancers.

J Clin Oncol. 2025-4-1

[2]
Plant polyphenols in gastric cancer: Nature's healing touch.

Semin Oncol. 2025-4

[3]
Enhanced gastric cancer classification and quantification interpretable framework using digital histopathology images.

Sci Rep. 2024-9-28

[4]
Gastric Cancer Detection with Ensemble Learning on Digital Pathology: Use Case of Gastric Cancer on GasHisSDB Dataset.

Diagnostics (Basel). 2024-8-12

[5]
Artificial Intelligence for the Automatic Diagnosis of Gastritis: A Systematic Review.

J Clin Med. 2024-8-15

[6]
Gastric Cancer Image Classification: A Comparative Analysis and Feature Fusion Strategies.

J Imaging. 2024-8-10

[7]
Public health education using social learning theory: a systematic scoping review.

BMC Public Health. 2024-7-16

[8]
Accuracy of artificial intelligence-assisted endoscopy in the diagnosis of gastric intestinal metaplasia: A systematic review and meta-analysis.

PLoS One. 2024

[9]
Ensemble Deep Learning Model to Predict Lymphovascular Invasion in Gastric Cancer.

Cancers (Basel). 2024-1-19

[10]
Medical image identification methods: A review.

Comput Biol Med. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索