Cao Zhiyuan, Keloth Vipina K, Xie Qianqian, Qian Lingfei, Liu Yuntian, Wang Yan, Shi Rui, Zhou Weipeng, Yang Gui, Zhang Jeffrey, Peng Xueqing, Zhen Ethan, Weng Ruey-Ling, Chen Qingyu, Xu Hua
Department of Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, Connecticut, USA; email:
School of Artificial Intelligence, Nanjing University, Jiangsu, China.
Annu Rev Biomed Data Sci. 2025 Aug;8(1):251-274. doi: 10.1146/annurev-biodatasci-102224-074736. Epub 2025 Apr 1.
Large language models (LLMs) have become powerful tools for biomedical applications, offering potential to transform healthcare and medical research. Since the release of ChatGPT in 2022, there has been a surge in LLMs for diverse biomedical applications. This review examines the landscape of text-based biomedical LLM development, analyzing model characteristics (e.g., architecture), development processes (e.g., training strategy), and applications (e.g., chatbots). Following PRISMA guidelines, 82 articles were selected out of 5,512 articles since 2022 that met our rigorous criteria, including the requirement of using biomedical data when training LLMs. Findings highlight the predominant use of decoder-only architectures such as Llama 7B, prevalence of task-specific fine-tuning, and reliance on biomedical literature for training. Challenges persist in balancing data openness with privacy concerns and detailing model development, including computational resources used. Future efforts would benefit from multimodal integration, LLMs for specialized medical applications, and improved data sharing and model accessibility.
大语言模型(LLMs)已成为生物医学应用的强大工具,为变革医疗保健和医学研究带来了潜力。自2022年ChatGPT发布以来,用于各种生物医学应用的大语言模型激增。本综述考察了基于文本的生物医学大语言模型开发的概况,分析了模型特征(如架构)、开发过程(如训练策略)和应用(如聊天机器人)。遵循PRISMA指南,从2022年以来的5512篇文章中筛选出82篇符合我们严格标准的文章,包括在训练大语言模型时使用生物医学数据的要求。研究结果突出了仅解码器架构(如Llama 7B)的主要使用情况、特定任务微调的普遍性以及对生物医学文献进行训练的依赖。在平衡数据开放性与隐私问题以及详细说明模型开发(包括所使用的计算资源)方面,挑战依然存在。未来的努力将受益于多模态整合、用于专门医学应用的大语言模型以及改进的数据共享和模型可及性。