Suppr超能文献

中国济南城市热岛时空演变、驱动机制及未来预测的多维评估

Multidimensional assessment of the spatiotemporal evolution, driving mechanisms, and future predictions of urban heat islands in Jinan, China.

作者信息

Tan Lingye, Robert Tiong Lee Kong, Zhang Yan, Huang Siyi, Zhang Ziyang

机构信息

School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

School of Public Affairs, Zhejiang University, Hangzhou, 310058, China.

出版信息

Sci Rep. 2025 Apr 1;15(1):11056. doi: 10.1038/s41598-025-86199-1.

Abstract

Understanding the spatiotemporal distribution of land surface temperature (LST) is crucial for managing urban thermal environments and mitigating urban heat island (UHI) effects. This study addresses the challenge of quantifying the complex interactions among natural and anthropogenic factors driving LST variations, while leveraging advanced modeling techniques to predict future thermal risks in rapidly urbanizing regions. By analyzing the evolution of LST in Jinan city, China, from 2002 to 2022, and forecasts future trends using advanced spatial analysis and predictive modeling techniques. Directional shifts in LST were quantified using the quadrant azimuth method and the standard deviation ellipse method, both of which analyze spatial distribution and dispersion. To identify the key drivers of LST variations, 14 socioeconomic and environmental factors were assessed using the optimal parameter-based geographical detector (OPGD) model, which effectively handles spatial heterogeneity. Key findings include: (1) a significant northward shift in the LST centroid and a 26.64% expansion in high-temperature areas, with noticeable cooling effects in the city center. (2) A nonlinear relationship between LST and socioeconomic factors, particularly GDP, where cooling effects were observed when GDP exceeded 10,000 yuan/km. (3) Synergistic interactions, especially between topographic factors (such as the Digital Elevation Model, DEM) and land-use indices (e.g., normalized difference built-up index, NDBI; normalized difference vegetation index, NDVI), were found to significantly influence LST variations. (4) The Oscillating Sequence Grey Model (OSGM), optimized for handling oscillating data sequences, demonstrated superior predictive accuracy, projecting a 20.72% increase in extreme high-temperature zones and a 40.61% reduction in moderate-high-temperature zones by 2047. These findings offer actionable strategies for urban planning and climate adaptation, aiming to mitigate thermal risks and inform future policies for urban sustainability and resilience. This research underscores the importance of integrating spatial and predictive analyses to inform urban planning and climate adaptation strategies, contributing to the mitigation of thermal risks and the development of sustainable urban policies.

摘要

了解地表温度(LST)的时空分布对于管理城市热环境和减轻城市热岛(UHI)效应至关重要。本研究应对了量化驱动LST变化的自然和人为因素之间复杂相互作用的挑战,同时利用先进的建模技术预测快速城市化地区未来的热风险。通过分析中国济南市2002年至2022年LST的演变,并使用先进的空间分析和预测建模技术预测未来趋势。LST的方向变化使用象限方位法和标准差椭圆法进行量化,这两种方法都用于分析空间分布和离散度。为了确定LST变化的关键驱动因素,使用基于最优参数的地理探测器(OPGD)模型评估了14个社会经济和环境因素,该模型有效地处理了空间异质性。主要发现包括:(1)LST质心显著向北移动,高温区域扩大了26.64%,市中心有明显的降温效应。(2)LST与社会经济因素,特别是GDP之间存在非线性关系,当GDP超过10000元/平方公里时观察到降温效应。(3)发现协同相互作用,特别是地形因素(如数字高程模型,DEM)和土地利用指数(如归一化差异建筑指数,NDBI;归一化差异植被指数,NDVI)之间的协同相互作用,对LST变化有显著影响。(4)针对处理振荡数据序列进行优化的振荡序列灰色模型(OSGM)表现出卓越的预测准确性,预计到2047年极端高温区将增加20.72%,中高温区将减少40.61%。这些发现为城市规划和气候适应提供了可操作的策略,旨在减轻热风险并为未来的城市可持续性和复原力政策提供参考。本研究强调了整合空间和预测分析以指导城市规划和气候适应策略的重要性,有助于减轻热风险和制定可持续的城市政策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验