Niu Lianjie, Li Wenshi, Bai Yongtao, Fang Keke, Han Shaoqiang, Liu Peng, Qu Jinrong, Sun Xianfu
Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, 450003, Jinshui, Zhengzhou, Henan, China.
Radiology department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450003, Henan, China.
Sci Rep. 2025 Apr 1;15(1):11060. doi: 10.1038/s41598-025-88203-0.
There is growing interest in utilizing dynamic methods to investigate psychiatric disorders, particularly the transient dynamic approaches. However, current research predominantly focuses on dynamic abnormalities within a single psychiatric disorder compared to healthy controls, without considering the shared and specific features across different psychiatric conditions. The dynamic abnormality across psychiatric disorders remains unclear. In this study, we employed Co-activation Pattern (CAP) method to investigate the transient configurations of brain activity across different psychiatric conditions, including schizophrenia (SZ, n = 37); bipolar I disorder (BD, n = 40); attention-deficit/hyperactivity disorder (ADHD, n = 37), and healthy controls (HC, n = 110). By conducting k-means clustering analysis, we identified 10 transient activation patterns. Our findings reveal that the specificity of psychiatric disorders is reflected in the transition probabilities between states, with distinct state transition patterns observed across different disorders. Notably, abnormal state transitions are concentrated in the core states (State 1 and State 2), highlighting the common dynamic abnormalities across psychiatric conditions. These core states involve the activation of the attention network and the sensorimotor network and show significant associations with the functional gradient. Furthermore, we found that abnormalities in state transitions are associated with cognitive behavior. Overall, this work provides a dynamic network perspective for understanding the shared and specific characteristic of psychiatric disorders.
利用动态方法研究精神疾病,尤其是瞬态动态方法,正受到越来越多的关注。然而,与健康对照相比,目前的研究主要集中在单一精神疾病中的动态异常,而没有考虑不同精神疾病之间的共同特征和特定特征。精神疾病之间的动态异常仍不清楚。在本研究中,我们采用共激活模式(CAP)方法来研究不同精神疾病状态下大脑活动的瞬态配置,包括精神分裂症(SZ,n = 37);双相I型障碍(BD,n = 40);注意力缺陷多动障碍(ADHD,n = 37)和健康对照(HC,n = 110)。通过进行k均值聚类分析,我们确定了10种瞬态激活模式。我们的研究结果表明,精神疾病的特异性体现在状态之间的转换概率上,不同疾病观察到不同的状态转换模式。值得注意的是,异常状态转换集中在核心状态(状态1和状态2),突出了不同精神疾病状态下常见的动态异常。这些核心状态涉及注意力网络和感觉运动网络的激活,并与功能梯度显示出显著关联。此外,我们发现状态转换异常与认知行为有关。总体而言,这项工作为理解精神疾病的共同特征和特定特征提供了一个动态网络视角。