Suppr超能文献

针对特定任务的功能正电子发射断层扫描(PET)成像的优化滤波策略。

Optimal filtering strategies for task-specific functional PET imaging.

作者信息

Reed Murray Bruce, Ponce de León Magdalena, Klug Sebastian, Milz Christian, Silberbauer Leo Robert, Falb Pia, Godbersen Godber Mathis, Jamadar Sharna, Chen Zhaolin, Nics Lukas, Hacker Marcus, Lanzenberger Rupert, Hahn Andreas

机构信息

Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.

Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.

出版信息

J Cereb Blood Flow Metab. 2025 Sep;45(9):1760-1773. doi: 10.1177/0271678X251325668. Epub 2025 Apr 2.

Abstract

Functional Positron Emission Tomography (fPET) is an effective tool for studying dynamic processes in glucose metabolism and neurotransmitter action, providing insights into brain function and disease progression. However, optimizing signal processing to extract stimulation-specific information remains challenging. This study systematically evaluates state-of-the-art filtering techniques for fPET imaging. Forty healthy participants performed a cognitive task (Tetris®) during [F]FDG PET/MR scans. Seven filtering techniques and multiple hyperparameters were tested: including 3D and 4D Gaussian smoothing, highly constrained backprojection (HYPR), iterative HYPR (IHYPR4D), MRI-Markov Random Field (MRI-MRF) filters, and dynamic/extended dynamic Non-Local Means (dNLM/edNLM). Filters were assessed based on test-retest reliability, task signal identifiability (temporal signal-to-noise ratio, tSNR), spatial task-based activation, and sample size calculations were assessed. Compared to 3D Gaussian smoothing, edNLM, dNLM, MRI-MRF L = 10, and IHYPR4D filters improved tSNR, while edNLM and HYPR enhanced test-retest reliability. Spatial task-based activation was enhanced by NLM filters and MRI-MRF approaches. The edNLM filter reduced the required sample size by 15.4%. Simulations supported these findings. This study highlights the strengths and limitations of fPET filtering techniques, emphasizing how hyperparamter adjustments affect outcome parameters. The edNLM filter shows promise with improved performance across all metrics, but filter selection should consider specific study objectives and resource constraints.

摘要

功能正电子发射断层扫描(fPET)是研究葡萄糖代谢和神经递质作用动态过程的有效工具,可为脑功能和疾病进展提供见解。然而,优化信号处理以提取刺激特异性信息仍然具有挑战性。本研究系统地评估了用于fPET成像的最新滤波技术。40名健康参与者在[F]FDG PET/MR扫描期间执行了一项认知任务(俄罗斯方块®)。测试了七种滤波技术和多个超参数:包括3D和4D高斯平滑、高约束反投影(HYPR)、迭代HYPR(IHYPR4D)、MRI-马尔可夫随机场(MRI-MRF)滤波器以及动态/扩展动态非局部均值(dNLM/edNLM)。基于重测信度、任务信号可识别性(时间信噪比,tSNR)、基于空间任务的激活对滤波器进行评估,并评估样本量计算。与3D高斯平滑相比,edNLM、dNLM、MRI-MRF L = 10和IHYPR4D滤波器提高了tSNR,而edNLM和HYPR提高了重测信度。基于空间任务的激活通过NLM滤波器和MRI-MRF方法得到增强。edNLM滤波器将所需样本量减少了15.4%。模拟结果支持了这些发现。本研究突出了fPET滤波技术的优势和局限性,强调了超参数调整如何影响结果参数。edNLM滤波器在所有指标上均表现出性能提升的前景,但滤波器的选择应考虑特定的研究目标和资源限制。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验