Braure Thomas, Lazaro Delphine, Hateau David, Brandon Vincent, Ginsburger Kévin
CEA DIF, Arpajon Cedex, France.
Université Paris-Saclay, CEA, List, Palaiseau, France.
J Med Imaging (Bellingham). 2025 Mar;12(2):024004. doi: 10.1117/1.JMI.12.2.024004. Epub 2025 Apr 1.
The issue of delivered doses during computed tomography (CT) scans encouraged sparser sets of X-ray projection, severely degrading reconstructions from conventional methods. Although most deep learning approaches benefit from large supervised datasets, they cannot generalize to new acquisition protocols (geometry, source/detector specifications). To address this issue, we developed a method working without training data and independently of experimental setups. In addition, our model may be initialized on small unsupervised datasets to enhance reconstructions.
We propose a conditioned generative latent optimization (cGLO) in which a decoder reconstructs multiple slices simultaneously with a shared objective. It is tested on full-dose sparse-view CT for varying projection sets: (a) without training data against Deep Image Prior (DIP) and (b) with training datasets of multiple sizes against state-of-the-art score-based generative models (SGMs). Peak signal-to-noise ratio (PSNR) and structural SIMilarity (SSIM) metrics are used to quantify reconstruction quality.
cGLO demonstrates better SSIM than SGMs (between and ) and has an increasing advantage for smaller datasets reaching a PSNR gain. Our strategy also outperforms DIP with at least a PSNR advantage and peaks at with fewer angles. Moreover, cGLO does not create artifacts or structural deformations contrary to DIP and SGMs.
We propose a parsimonious and robust reconstruction technique offering similar to better performances when compared with state-of-the-art methods regarding full-dose sparse-view CT. Our strategy could be readily applied to any imaging reconstruction task without any assumption about the acquisition protocol or the quantity of available data.
计算机断层扫描(CT)扫描过程中的剂量问题促使采用更稀疏的X射线投影集,这严重降低了传统方法的重建效果。尽管大多数深度学习方法受益于大量有监督的数据集,但它们无法推广到新的采集协议(几何形状、源/探测器规格)。为了解决这个问题,我们开发了一种无需训练数据且独立于实验设置的方法。此外,我们的模型可以在小的无监督数据集上进行初始化以增强重建效果。
我们提出了一种条件生成潜变量优化(cGLO)方法,其中解码器通过共享目标同时重建多个切片。它在全剂量稀疏视图CT上针对不同的投影集进行了测试:(a)在没有训练数据的情况下与深度图像先验(DIP)进行比较,(b)在有不同大小训练数据集的情况下与基于分数的生成模型(SGM)的最新技术进行比较。使用峰值信噪比(PSNR)和结构相似性(SSIM)指标来量化重建质量。
cGLO在SSIM方面比SGM表现更好(在 和 之间),并且对于较小的数据集具有越来越大的优势,PSNR增益达到 。我们的策略在PSNR方面也优于DIP,至少有 的优势,并且在角度较少时在 达到峰值。此外,与DIP和SGM不同,cGLO不会产生伪影或结构变形。
我们提出了一种简洁且稳健的重建技术,与全剂量稀疏视图CT的最新技术方法相比,具有相似或更好的性能。我们的策略可以很容易地应用于任何成像重建任务,而无需对采集协议或可用数据量进行任何假设。