Department of Radiology, Mayo Clinic, Rochester, MN, USA.
Biomedical Imaging Resource, Mayo Clinic, Rochester, MN, USA.
Med Phys. 2021 Feb;48(2):902-911. doi: 10.1002/mp.14594. Epub 2020 Dec 16.
To describe a large, publicly available dataset comprising computed tomography (CT) projection data from patient exams, both at routine clinical doses and simulated lower doses.
The library was developed under local ethics committee approval. Projection and image data from 299 clinically performed patient CT exams were archived for three types of clinical exams: noncontrast head CT scans acquired for acute cognitive or motor deficit, low-dose noncontrast chest scans acquired to screen high-risk patients for pulmonary nodules, and contrast-enhanced CT scans of the abdomen acquired to look for metastatic liver lesions. Scans were performed on CT systems from two different CT manufacturers using routine clinical protocols. Projection data were validated by reconstructing the data using several different reconstruction algorithms and through use of the data in the 2016 Low Dose CT Grand Challenge. Reduced dose projection data were simulated for each scan using a validated noise-insertion method. Radiologists marked location and diagnosis for detected pathologies. Reference truth was obtained from the patient medical record, either from histology or subsequent imaging.
Projection datasets were converted into the previously developed DICOM-CT-PD format, which is an extended DICOM format created to store CT projections and acquisition geometry in a nonproprietary format. Image data are stored in the standard DICOM image format and clinical data in a spreadsheet. Materials are provided to help investigators use the DICOM-CT-PD files, including a dictionary file, data reader, and user manual. The library is publicly available from The Cancer Imaging Archive (https://doi.org/10.7937/9npb-2637).
This CT data library will facilitate the development and validation of new CT reconstruction and/or denoising algorithms, including those associated with machine learning or artificial intelligence. The provided clinical information allows evaluation of task-based diagnostic performance.
描述一个大型的、公开可用的数据集,其中包含来自患者检查的计算机断层扫描(CT)投影数据,包括常规临床剂量和模拟的较低剂量。
该库是在当地伦理委员会的批准下开发的。从 299 例临床进行的患者 CT 检查中存档了投影和图像数据,用于三种类型的临床检查:用于急性认知或运动功能障碍的非对比头部 CT 扫描、用于筛查高危人群肺结节的低剂量非对比胸部扫描,以及用于寻找转移性肝病变的腹部增强 CT 扫描。使用常规临床方案,在来自两个不同 CT 制造商的 CT 系统上进行扫描。通过使用几种不同的重建算法重建数据,并在 2016 年低剂量 CT 大挑战中使用数据,验证了投影数据的准确性。使用经过验证的噪声插入方法模拟了每个扫描的降低剂量投影数据。放射科医生对检测到的病变进行了位置和诊断标记。参考真实情况是从患者的病历中获得的,要么来自组织学,要么来自后续的影像学检查。
投影数据集已转换为先前开发的 DICOM-CT-PD 格式,这是一种扩展的 DICOM 格式,用于以非专有的格式存储 CT 投影和采集几何形状。图像数据存储在标准的 DICOM 图像格式中,临床数据存储在电子表格中。提供了材料来帮助研究人员使用 DICOM-CT-PD 文件,包括字典文件、数据读取器和用户手册。该库可从癌症成像档案(https://doi.org/10.7937/9npb-2637)公开获得。
这个 CT 数据库将有助于开发和验证新的 CT 重建和/或去噪算法,包括与机器学习或人工智能相关的算法。提供的临床信息允许评估基于任务的诊断性能。