Hsu Chia-Tien, Huang Chin-Yin, Chen Cheng-Hsu, Deng Ya-Lian, Lin Shih-Yi, Wu Ming-Ju
Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, 407224, Taiwan.
Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 407219, Taiwan.
Sci Rep. 2025 Apr 3;15(1):11391. doi: 10.1038/s41598-025-95928-5.
Chronic kidney disease-mineral bone disorder is a common complication in patients with chronic kidney disease (CKD) and end-stage kidney disease (ESKD), and it increases the risk of osteoporosis and fractures. This study aimed to develop predictive machine-learning (ML) models to identify osteoporosis risk in patients with CKD stages 3-5 and ESKD. We retrospectively analyzed a de-identified osteoporosis database from a Taiwanese hospital, including 6614 patients with CKD stages 3-5 and ESKD who underwent bone mineral density (BMD) scans between January 2011 and June 2022. Nine ML algorithms were applied to predict osteoporosis: logistic regression, XGBoost, LightGBM, CatBoost, SVM, decision tree, random forest, k-nearest neighbors, and an artificial neural network (ANN). The ANN model achieved the highest predictive performance, with an area under the curve (AUC) of 0.940 on the validation and 0.930 on the test datasets. The receiver operating characteristic curve, confusion matrix, and predictive probability histogram revealed that the ANN model performed well in terms of discrimination. Calibration and decision curve analyses further demonstrated the reliability and applicability of the ANN model. The ANN model demonstrated the potential for clinical implementation in screening high-risk patients for osteoporosis.
慢性肾脏病-矿物质与骨异常是慢性肾脏病(CKD)和终末期肾病(ESKD)患者常见的并发症,它会增加骨质疏松和骨折的风险。本研究旨在开发预测性机器学习(ML)模型,以识别3-5期CKD和ESKD患者的骨质疏松风险。我们回顾性分析了台湾一家医院的一个去识别化骨质疏松数据库,其中包括2011年1月至2022年6月期间接受骨密度(BMD)扫描的6614例3-5期CKD和ESKD患者。应用九种ML算法预测骨质疏松:逻辑回归、XGBoost、LightGBM、CatBoost、支持向量机(SVM)、决策树、随机森林、k近邻和人工神经网络(ANN)。ANN模型实现了最高的预测性能,在验证数据集上的曲线下面积(AUC)为0.940,在测试数据集上为0.930。受试者工作特征曲线、混淆矩阵和预测概率直方图显示,ANN模型在区分能力方面表现良好。校准和决策曲线分析进一步证明了ANN模型的可靠性和适用性。ANN模型显示了在筛查骨质疏松高危患者方面的临床应用潜力。