Amin Naz Ul, Islam Fakhrul, Umar Muhammad, Muhammad Waqas, Rahman Siddiq Ur, Gaafar Abdel-Rhman Z, Shah Tawaf Ali, Dauelbait Musaab, Bourhia Mohammed
Department of Meteorology, COMSATS University Islamabad (CUI), Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
Sci Rep. 2025 Apr 4;15(1):11582. doi: 10.1038/s41598-025-95109-4.
The decision support system for agro-technology transfer (DSSAT) is a worldwide crop modeling platform used for crops growth, yield, leaf area index (LAI), and biomass estimation under varying climatic, soil and management conditions. This study integrates DSSAT with satellite remote sensing (RS) data to estimates canopy state variables like LAI and biomass. For LAI estimation, Moderate Resolution Imaging Spectroradiometer (MODIS) product (MCD15A3H for LAI and MOD17A2 / MOD17A3 products for biomass) are used. Field data for Sheikhupura district is provided by National Agriculture Research Council (NARC) and used for the calibration and validation of the model. The results indicate strong agreement between the DSSAT and RS derived estimates. Correlation coefficients (R²) for LAI varied from 0.82 to 0.90, while for biomass ranged from 0.92 to 0.99 over two farms and two growing seasons (2012-2014). The index of agreement (D-index) ranged from 0.79 to 0.96 across the two farms and two growing seasons (2012-2014) affirming the model's durability. However, the biomass estimated from RS data is underestimated due to saturation phenomenon in the optical RS. The performance metrics, comprising the coefficient of residual mass (CRM) and normalized root mean square error (nRMSE), further substantiate the approach utilized. This study will help decision and policymakers and researchers to apply geospatial techniques for the sustainable agriculture practices.
农业技术转移决策支持系统(DSSAT)是一个全球作物建模平台,用于在不同气候、土壤和管理条件下估算作物生长、产量、叶面积指数(LAI)和生物量。本研究将DSSAT与卫星遥感(RS)数据相结合,以估算诸如LAI和生物量等冠层状态变量。对于LAI估算,使用了中分辨率成像光谱仪(MODIS)产品(用于LAI的MCD15A3H以及用于生物量的MOD17A2/MOD17A3产品)。谢赫布尔地区的田间数据由国家农业研究委员会(NARC)提供,并用于模型的校准和验证。结果表明DSSAT估算值与RS估算值之间具有很强的一致性。在两个农场和两个生长季节(2012 - 2014年)中,LAI的相关系数(R²)在0.82至0.90之间,而生物量的相关系数在0.92至0.99之间。在两个农场和两个生长季节(2012 - 2014年)中,一致性指数(D指数)在0.79至0.96之间,证实了该模型的耐用性。然而,由于光学RS中的饱和现象,RS数据估算的生物量被低估了。包括残余质量系数(CRM)和归一化均方根误差(nRMSE)在内的性能指标进一步证实了所采用的方法。本研究将有助于决策者、政策制定者和研究人员将地理空间技术应用于可持续农业实践。