Li Yijie Jamie, Kuplicki Rayus, Ford Bart N, Kresock Elizabeth, Figueroa-Hall Leandra, Savitz Jonathan, McKinney Brett A
Tandy School of Computer Science, The University of Tulsa, Tulsa, OK, USA.
Laureate Institute for Brain Research, Tulsa, OK, USA.
Neurobiol Aging. 2025 Jul;151:13-21. doi: 10.1016/j.neurobiolaging.2025.01.012. Epub 2025 Apr 1.
Recent associations between Major Depressive Disorder (MDD) and measures of premature aging suggest accelerated biological aging as a potential biomarker for MDD susceptibility or MDD as a risk factor for age-related diseases. Residuals or "gaps" between the predicted biological age and chronological age have been used for statistical inference, such as testing whether an increased age gap is associated with a given disease state. Recently, a gene expression-based model of biological age showed a higher age gap for individuals with MDD compared to healthy controls (HC). In the current study, we propose an approach that simplifies gene selection using a least absolute shrinkage and selection operator (LASSO) penalty to construct an expression-based Gene Age Gap Estimate (GAGE) model. We train a LASSO gene age model on an RNA-Seq study of 78 unmedicated individuals with MDD and 79 HC, resulting in a model with 21 genes. The L-GAGE shows higher biological aging in MDD participants than HC, but the elevation is not statistically significant. However, when we dichotomize chronological age, the interaction between MDD status and age has a significant association with L-GAGE. This effect remains statistically significant even after adjusting for chronological age and sex. Using the 21 age genes, we find a statistically significant elevated biological age in MDD in an independent microarray gene expression dataset. We find functional enrichment of infectious disease and SARS-COV pathways using a broader feature selection of age related genes.
重度抑郁症(MDD)与早衰指标之间最近的关联表明,加速的生物衰老可能是MDD易感性的生物标志物,或者MDD是与年龄相关疾病的风险因素。预测的生物年龄与实际年龄之间的残差或“差距”已被用于统计推断,例如测试年龄差距增加是否与特定疾病状态相关。最近,一种基于基因表达的生物年龄模型显示,与健康对照(HC)相比,MDD个体的年龄差距更大。在本研究中,我们提出了一种方法,该方法使用最小绝对收缩和选择算子(LASSO)惩罚来简化基因选择,以构建基于表达的基因年龄差距估计(GAGE)模型。我们在一项对78名未服药的MDD个体和79名HC的RNA测序研究中训练了一个LASSO基因年龄模型,得到了一个包含21个基因的模型。L-GAGE显示MDD参与者的生物衰老程度高于HC,但升高幅度没有统计学意义。然而,当我们对实际年龄进行二分法时,MDD状态与年龄之间的相互作用与L-GAGE有显著关联。即使在调整了实际年龄和性别后,这种效应仍然具有统计学意义。使用这21个年龄相关基因,我们在一个独立的微阵列基因表达数据集中发现MDD患者的生物年龄在统计学上显著升高。我们使用更广泛的年龄相关基因特征选择,发现传染病和SARS-CoV途径的功能富集。