Shi Jianwei, Zhang Yuanyuan, Song Ziang, Xu Hang, Yang Yanfeng, Jin Lei, Dong Hengxin, Li Zhaoying, Wei Penghu, Shan Yongzhi, Zhao Guoguang
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
China International Neuroscience Institute (China-INI), Beijing, China.
J Transl Med. 2025 Apr 5;23(1):405. doi: 10.1186/s12967-025-06414-5.
BACKGROUND: Identification of seizures is essential for the treatment of epilepsy. Current machine-learning and deep-learning models often perform well on public datasets when classifying generalized seizures with prominent features. However, their performance was less effective in detecting brief, localized seizures. These seizure-like patterns can be masked by fixed brain rhythms. METHODS: Our study proposes a supervised multilayer hybrid model called GEM-CRAP (gradient-enhanced modulation with CNN-RES, attention-like, and pre-policy networks), with three parallel feature extraction channels: a CNN-RES module, an amplitude-aware channel with attention-like mechanisms, and an LSTM-based pre-policy layer integrated into the recurrent neural network. The model was trained on the Xuanwu Hospital and HUP iEEG dataset, including intracranial, cortical, and stereotactic EEG data from 83 patients, covering over 8500 labeled electrode channels for hybrid classification (wakefulness and sleep). A post-SVM network was used for secondary training on channels with classification accuracy below 80%. We introduced an average channel deviation rate metric to assess seizure detection accuracy. RESULTS: For public datasets, the model achieved over 97% accuracy for intracranial and cortical EEG sequences in patients, and over 95% for mixed sequences, with deviations below 5%. In the Xuanwu Hospital dataset, it maintained over 94% accuracy for wakefulness seizures and around 90% during sleep. SVM secondary training improved average channel accuracy by over 10%. Additionally, a strong positive correlation was found between channel accuracy distribution and the temporal distribution of seizure states. CONCLUSIONS: GEM-CRAP enhances focal epilepsy detection through adaptive adjustments and attention mechanisms, achieving higher precision and robustness in complex signal environments. Beyond improving seizure interval detection, it excels in identifying and analyzing specific epileptic waveforms, such as high-frequency oscillations. This advancement may pave the way for more precise epilepsy diagnostics and provide a suitable artificial intelligence algorithm for closed-loop neurostimulation.
背景:癫痫发作的识别对于癫痫治疗至关重要。当前的机器学习和深度学习模型在对具有突出特征的全身性癫痫发作进行分类时,在公共数据集上通常表现良好。然而,它们在检测短暂的局灶性癫痫发作时效果较差。这些类似癫痫发作的模式可能会被固定的脑节律所掩盖。 方法:我们的研究提出了一种名为GEM-CRAP(具有CNN-RES、类注意力和预策略网络的梯度增强调制)的监督式多层混合模型,它有三个并行的特征提取通道:一个CNN-RES模块、一个具有类注意力机制的幅度感知通道,以及一个集成到循环神经网络中的基于长短期记忆(LSTM)的预策略层。该模型在宣武医院和HUP颅内脑电图(iEEG)数据集上进行训练,该数据集包括来自83名患者的颅内、皮层和立体定向脑电图数据,涵盖超过8500个用于混合分类(清醒和睡眠)的标记电极通道。一个后支持向量机(SVM)网络用于对分类准确率低于80%的通道进行二次训练。我们引入了平均通道偏差率指标来评估癫痫发作检测的准确性。 结果:对于公共数据集,该模型在患者的颅内和皮层脑电图序列上的准确率超过97%,在混合序列上超过95%,偏差低于5%。在宣武医院数据集中,其对清醒时癫痫发作的准确率保持在94%以上,睡眠期间约为90%。SVM二次训练使平均通道准确率提高了10%以上。此外,还发现通道准确率分布与癫痫发作状态的时间分布之间存在很强的正相关。 结论:GEM-CRAP通过自适应调整和注意力机制增强了局灶性癫痫检测,在复杂信号环境中实现了更高的精度和鲁棒性。除了改善癫痫发作间隔检测外,它在识别和分析特定的癫痫波形(如高频振荡)方面表现出色。这一进展可能为更精确的癫痫诊断铺平道路,并为闭环神经刺激提供合适的人工智能算法。
J Transl Med. 2025-4-5
BMC Med Inform Decis Mak. 2025-1-6
BMC Med Inform Decis Mak. 2018-12-7
Biomed Phys Eng Express. 2024-4-26
IEEE J Biomed Health Inform. 2024-11
Clin Neurophysiol. 2018-11-15
Neurosci Bull. 2025-5
Sensors (Basel). 2024-1-29
Mil Med Res. 2023-12-19
Lancet. 2023-7-29
Biomedicines. 2023-3-7