Department of Computer Science, Princeton University, Princeton, NJ, USA.
Nat Methods. 2022 May;19(5):567-575. doi: 10.1038/s41592-022-01459-6. Epub 2022 May 16.
Spatial transcriptomics (ST) measures mRNA expression across thousands of spots from a tissue slice while recording the two-dimensional (2D) coordinates of each spot. We introduce probabilistic alignment of ST experiments (PASTE), a method to align and integrate ST data from multiple adjacent tissue slices. PASTE computes pairwise alignments of slices using an optimal transport formulation that models both transcriptional similarity and physical distances between spots. PASTE further combines pairwise alignments to construct a stacked 3D alignment of a tissue. Alternatively, PASTE can integrate multiple ST slices into a single consensus slice. We show that PASTE accurately aligns spots across adjacent slices in both simulated and real ST data, demonstrating the advantages of using both transcriptional similarity and spatial information. We further show that the PASTE integrated slice improves the identification of cell types and differentially expressed genes compared with existing approaches that either analyze single ST slices or ignore spatial information.
空间转录组学 (ST) 可在记录每个点的二维 (2D) 坐标的同时,测量组织切片中数千个点的 mRNA 表达情况。我们引入了 ST 实验的概率对齐(PASTE)方法,用于对齐和整合来自多个相邻组织切片的 ST 数据。PASTE 使用最优传输公式计算切片之间的两两对齐,该公式同时考虑了转录相似性和点之间的物理距离。PASTE 进一步结合两两对齐来构建组织的堆叠 3D 对齐。或者,PASTE 可以将多个 ST 切片整合到单个共识切片中。我们表明,PASTE 可以在模拟和真实 ST 数据中准确地对齐相邻切片中的点,展示了同时使用转录相似性和空间信息的优势。我们进一步表明,与仅分析单个 ST 切片或忽略空间信息的现有方法相比,PASTE 整合的切片可提高细胞类型和差异表达基因的识别能力。