Suppr超能文献

空间转录组学数据的对齐和整合。

Alignment and integration of spatial transcriptomics data.

机构信息

Department of Computer Science, Princeton University, Princeton, NJ, USA.

出版信息

Nat Methods. 2022 May;19(5):567-575. doi: 10.1038/s41592-022-01459-6. Epub 2022 May 16.

Abstract

Spatial transcriptomics (ST) measures mRNA expression across thousands of spots from a tissue slice while recording the two-dimensional (2D) coordinates of each spot. We introduce probabilistic alignment of ST experiments (PASTE), a method to align and integrate ST data from multiple adjacent tissue slices. PASTE computes pairwise alignments of slices using an optimal transport formulation that models both transcriptional similarity and physical distances between spots. PASTE further combines pairwise alignments to construct a stacked 3D alignment of a tissue. Alternatively, PASTE can integrate multiple ST slices into a single consensus slice. We show that PASTE accurately aligns spots across adjacent slices in both simulated and real ST data, demonstrating the advantages of using both transcriptional similarity and spatial information. We further show that the PASTE integrated slice improves the identification of cell types and differentially expressed genes compared with existing approaches that either analyze single ST slices or ignore spatial information.

摘要

空间转录组学 (ST) 可在记录每个点的二维 (2D) 坐标的同时,测量组织切片中数千个点的 mRNA 表达情况。我们引入了 ST 实验的概率对齐(PASTE)方法,用于对齐和整合来自多个相邻组织切片的 ST 数据。PASTE 使用最优传输公式计算切片之间的两两对齐,该公式同时考虑了转录相似性和点之间的物理距离。PASTE 进一步结合两两对齐来构建组织的堆叠 3D 对齐。或者,PASTE 可以将多个 ST 切片整合到单个共识切片中。我们表明,PASTE 可以在模拟和真实 ST 数据中准确地对齐相邻切片中的点,展示了同时使用转录相似性和空间信息的优势。我们进一步表明,与仅分析单个 ST 切片或忽略空间信息的现有方法相比,PASTE 整合的切片可提高细胞类型和差异表达基因的识别能力。

相似文献

1
Alignment and integration of spatial transcriptomics data.空间转录组学数据的对齐和整合。
Nat Methods. 2022 May;19(5):567-575. doi: 10.1038/s41592-022-01459-6. Epub 2022 May 16.
8
DeST-OT: Alignment of Spatiotemporal Transcriptomics Data.DeST-OT:时空转录组学数据的比对
bioRxiv. 2024 Mar 10:2024.03.05.583575. doi: 10.1101/2024.03.05.583575.

引用本文的文献

9
Informatics at the Frontier of Cancer Research.癌症研究前沿的信息学
Cancer Res. 2025 Aug 15;85(16):2967-2986. doi: 10.1158/0008-5472.CAN-24-2829.

本文引用的文献

4
Spatial transcriptomics at subspot resolution with BayesSpace.基于 BayesSpace 的亚斑点分辨率空间转录组学。
Nat Biotechnol. 2021 Nov;39(11):1375-1384. doi: 10.1038/s41587-021-00935-2. Epub 2021 Jun 3.
8
Method of the Year: spatially resolved transcriptomics.年度方法:空间分辨转录组学。
Nat Methods. 2021 Jan;18(1):9-14. doi: 10.1038/s41592-020-01033-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验