Zhang Lanyue, Zhao Jiangnan, Su Chunyu, Wu Jianxi, Jiang Lai, Chi Hao, Wang Qin
Clinical Medical College, Southwest Medical University, Luzhou, China.
Department of Preventive Medicine, Southwest Medical University, Luzhou, China.
Front Immunol. 2025 Mar 21;16:1573686. doi: 10.3389/fimmu.2025.1573686. eCollection 2025.
Metabolic reprogramming is a hallmark of ovarian cancer, enabling tumor progression, immune evasion and drug resistance. The tumor microenvironment (TME) further shapes metabolic adaptations, enabling cancer cells to withstand hypoxia and nutrient deprivation. While organoid models provide a physiologically relevant platform for studying these processes, they still lack immune and vascular components, limiting their ability to fully recapitulate tumor metabolism and drug responses. In this study, we investigated the key metabolic mechanisms involved in ovarian cancer progression, focusing on glycolysis, lipid metabolism and amino acid metabolism. We integrated metabolomic analyses and drug sensitivity assays to explore metabolic-TME interactions using patient-derived, adult stem cell-derived and iPSC-derived organ tissues. Among these, we found that glycolysis, lipid metabolism and amino acid metabolism play a central role in tumor progression and chemotherapy resistance. We identified methylglyoxal (MGO)-mediated BRCA2 dysfunction as a driver of immune escape, a role for sphingolipid signaling in tumor proliferation and a role for kynurenine metabolism in CD8+ T cell suppression. In addition, PI3K/AKT/mTOR and Wnt/β-catenin pathways promote chemoresistance through metabolic adaptation. By elucidating the link between metabolic reprogramming and immune evasion, this study identifies key metabolic vulnerabilities and potential drug targets in ovarian cancer. Our findings support the development of metabolically targeted therapies and increase the utility of organoid-based precision medicine models.
代谢重编程是卵巢癌的一个标志,它促进肿瘤进展、免疫逃逸和耐药性。肿瘤微环境(TME)进一步塑造代谢适应性,使癌细胞能够耐受缺氧和营养剥夺。虽然类器官模型为研究这些过程提供了一个生理相关的平台,但它们仍然缺乏免疫和血管成分,限制了它们全面再现肿瘤代谢和药物反应的能力。在本研究中,我们调查了卵巢癌进展中涉及的关键代谢机制,重点关注糖酵解、脂质代谢和氨基酸代谢。我们整合了代谢组学分析和药物敏感性测定,以使用患者来源、成体干细胞来源和诱导多能干细胞来源的器官组织探索代谢与肿瘤微环境的相互作用。在这些研究中,我们发现糖酵解、脂质代谢和氨基酸代谢在肿瘤进展和化疗耐药中起核心作用。我们确定甲基乙二醛(MGO)介导的BRCA2功能障碍是免疫逃逸的驱动因素,鞘脂信号在肿瘤增殖中的作用以及犬尿氨酸代谢在CD8 + T细胞抑制中的作用。此外,PI3K/AKT/mTOR和Wnt/β-连环蛋白通路通过代谢适应促进化疗耐药。通过阐明代谢重编程与免疫逃逸之间的联系,本研究确定了卵巢癌中的关键代谢脆弱性和潜在药物靶点。我们的研究结果支持代谢靶向治疗的开发,并提高基于类器官的精准医学模型的实用性。