Suppr超能文献

基于一级和二级接触者追踪的感染风险进行检测分配。

Test allocation based on risk of infection from first and second order contact tracing.

作者信息

Gabriela Bayolo Soler, Miraine Dávila Felipe, Gayraud Ghislaine

机构信息

LMAC (Laboratory ofApplied Mathematics of Compiègne), Université de technologie de Compiègne,Compiègne, France.

出版信息

PLoS One. 2025 Apr 7;20(4):e0320291. doi: 10.1371/journal.pone.0320291. eCollection 2025.

Abstract

Strategies such as testing, contact tracing, and quarantine have been proven to be essential mechanisms to mitigate the propagation of infectious diseases. However, when an epidemic spreads rapidly and/or the resources to contain it are limited (e.g., not enough tests available on a daily basis), to test and quarantine all the contacts of detected individuals is impracticable. In this direction, we propose a method to compute the individual risk of infection over time, based on the partial observation of the epidemic spreading through the population contact network. We define the risk of individuals as their probability of getting infected from any of the possible chains of transmission up to length-two, originating from recently detected individuals. Ranking individuals according to their risk of infection can serve as a decision-making tool to prioritise testing, quarantine, or other preventive measures. We evaluate interventions based on our risk ranking through simulations using a fairly realistic agent-based model calibrated for COVID-19 epidemic outbreak. We consider different scenarios to study the role of key quantities such as the number of daily available tests, the contact tracing time-window, the transmission probability per contact (constant versus depending on multiple factors), and the age since infection (for varying infectiousness). We find that, when there is a limited number of daily tests available, our method is capable of mitigating the propagation more efficiently than some other approaches in the recent literature on the subject. A crucial aspect of our method is that we provide an explicit formula for the risk, avoiding the large number of iterations required to achieve convergence for the algorithms proposed in the literature. Furthermore, neither the entire contact network nor a centralised setup is required. These characteristics are essential for the practical implementation using contact tracing applications.

摘要

诸如检测、接触者追踪和隔离等策略已被证明是减轻传染病传播的重要机制。然而,当疫情迅速蔓延和/或控制疫情的资源有限时(例如,每天可用的检测数量不足),对所有已检测出的个体的接触者进行检测和隔离是不切实际的。在这个方向上,我们提出了一种方法,基于通过人群接触网络传播的疫情的部分观测数据,来计算个体随时间的感染风险。我们将个体的风险定义为他们从最近检测出的个体开始,通过任何长度为二的可能传播链被感染的概率。根据个体的感染风险进行排序,可以作为一种决策工具,用于确定检测、隔离或其他预防措施的优先级。我们通过使用针对新冠疫情爆发校准的相当逼真的基于主体的模型进行模拟,来评估基于我们的风险排序的干预措施。我们考虑不同的情景,以研究关键数量的作用,如每日可用检测数量、接触者追踪时间窗口、每次接触的传播概率(恒定的与取决于多个因素的)以及感染后的时长(针对不同的传染性)。我们发现,当每日可用检测数量有限时,我们的方法比近期该主题文献中的其他一些方法更能有效地减轻传播。我们方法的一个关键方面是,我们为风险提供了一个明确的公式,避免了文献中提出的算法为实现收敛所需的大量迭代。此外,既不需要整个接触网络,也不需要集中设置。这些特性对于使用接触者追踪应用程序进行实际实施至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c5/11975095/8ae322dcecdd/pone.0320291.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验