Wu Ming-Hsiu, Xie Ziqian, Zhi Degui
McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA.
Commun Chem. 2025 Apr 7;8(1):108. doi: 10.1038/s42004-025-01506-1.
Accurate protein-ligand binding affinity prediction is crucial in drug discovery. Existing methods are predominately docking-free, without explicitly considering atom-level interaction between proteins and ligands in scenarios where crystallized protein-ligand binding conformations are unavailable. Now, with breakthroughs in deep learning AI-based protein folding and binding conformation prediction, can we improve binding affinity prediction? This study introduces a framework, Folding-Docking-Affinity (FDA), which folds proteins, determines protein-ligand binding conformations, and predicts binding affinities from three-dimensional protein-ligand binding structures. Our experimental results indicate that FDA performs comparably to state-of-the-art docking-free methods. We anticipate that our proposed framework serves as a starting point for integrating binding structures for more accurate binding affinity prediction.
准确预测蛋白质-配体结合亲和力在药物发现中至关重要。现有方法主要是无对接的,在无法获得结晶化蛋白质-配体结合构象的情况下,没有明确考虑蛋白质和配体之间的原子水平相互作用。如今,随着基于深度学习人工智能的蛋白质折叠和结合构象预测取得突破,我们能否改进结合亲和力预测呢?本研究引入了一个框架,即折叠-对接-亲和力(FDA),它对蛋白质进行折叠,确定蛋白质-配体结合构象,并从三维蛋白质-配体结合结构预测结合亲和力。我们的实验结果表明,FDA的表现与最先进的无对接方法相当。我们预计,我们提出的框架将作为整合结合结构以进行更准确结合亲和力预测的起点。