Suppr超能文献

使用互易边界元快速多极子方法的高清脑磁图源估计

High-Definition MEG Source Estimation using the Reciprocal Boundary Element Fast Multipole Method.

作者信息

Ponasso Guillermo Nuñez, Drumm Derek A, Wang Abbie, Noetscher Gregory M, Hämäläinen Matti, Knösche Thomas R, Maess Burkhard, Haueisen Jens, Makaroff Sergey N, Raij Tommi

机构信息

Dept. of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Graduate School of Information Sciences, Division of Mathematics, Tohoku University, Sendai, Miyagi, Japan.

出版信息

bioRxiv. 2025 Mar 24:2025.03.21.644601. doi: 10.1101/2025.03.21.644601.

Abstract

(MEG) source estimation relies on the computation of the gain (lead-field) matrix, which embodies the linear relationship between the amplitudes of the sources and the recorded signals. However, with a realistic forward model, the calculation of the gain matrix in a "direct" fashion is a computationally expensive task because the number of dipolar sources in standard MEG pipelines is often limited to ~10,000. We propose a fast approach based on the reciprocal relationship between MEG and transcranial magnetic stimulation (TMS). This approach couples naturally with the charge-based boundary element fast multipole method (BEM-FMM), which allows us to efficiently generate gain matrices for high-resolution multi-layer non-nested meshes involving source spaces of up to a ~1 million dipoles. We evaluate our approach by performing MEG source reconstruction against simulated data (at varying noise levels) obtained from the direct computation of MEG readings from 2000 different dipole positions over the cortical surface of 5 healthy subjects. Additionally, we test our methods with real MEG data from evoked somatosensory fields by right-hand median nerve stimulation in these same 5 subjects. We compare our experimental source reconstruction results against the standard MNE-Python source reconstruction pipeline.

摘要

(脑磁图)源估计依赖于增益(导场)矩阵的计算,该矩阵体现了源的振幅与记录信号之间的线性关系。然而,对于一个实际的正向模型,以“直接”方式计算增益矩阵是一项计算成本高昂的任务,因为标准脑磁图流程中的偶极源数量通常限制在约10000个。我们提出了一种基于脑磁图与经颅磁刺激(TMS)之间互易关系的快速方法。这种方法自然地与基于电荷的边界元快速多极子方法(BEM-FMM)相结合,这使我们能够有效地为涉及多达约100万个偶极子源空间的高分辨率多层非嵌套网格生成增益矩阵。我们通过对从5名健康受试者皮质表面2000个不同偶极子位置直接计算脑磁图读数获得的模拟数据(在不同噪声水平下)进行脑磁图源重建来评估我们的方法。此外,我们用这5名受试者右手正中神经刺激诱发体感场的真实脑磁图数据测试我们的方法。我们将实验源重建结果与标准的MNE-Python源重建流程进行比较。

相似文献

1
High-Definition MEG Source Estimation using the Reciprocal Boundary Element Fast Multipole Method.
bioRxiv. 2025 Mar 24:2025.03.21.644601. doi: 10.1101/2025.03.21.644601.
2
Accuracy of dipole source reconstruction in the 3-layer BEM model against the 5-layer BEM-FMM model.
bioRxiv. 2024 May 21:2024.05.17.594750. doi: 10.1101/2024.05.17.594750.
3
Fast EEG/MEG BEM-based forward problem solution for high-resolution head models.
Neuroimage. 2025 Feb 1;306:120998. doi: 10.1016/j.neuroimage.2024.120998. Epub 2025 Jan 1.
4
Fast and Accurate EEG/MEG BEM-Based Forward Problem Solution for High-Resolution Head Models.
bioRxiv. 2024 Jun 8:2024.06.07.598024. doi: 10.1101/2024.06.07.598024.
7
Improving EEG Forward Modeling Using High-Resolution Five-Layer BEM-FMM Head Models: Effect on Source Reconstruction Accuracy.
Bioengineering (Basel). 2024 Oct 26;11(11):1071. doi: 10.3390/bioengineering11111071.
8
A fast direct solver for surface-based whole-head modeling of transcranial magnetic stimulation.
Res Sq. 2023 Jul 10:rs.3.rs-3079433. doi: 10.21203/rs.3.rs-3079433/v1.
9
Localization of realistic cortical activity in MEG using current multipoles.
Neuroimage. 2004 Jun;22(2):779-93. doi: 10.1016/j.neuroimage.2004.02.010.
10
Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings.
IEEE Trans Biomed Eng. 2021 Jan;68(1):308-318. doi: 10.1109/TBME.2020.2999271. Epub 2020 Dec 21.

本文引用的文献

1
Fast EEG/MEG BEM-based forward problem solution for high-resolution head models.
Neuroimage. 2025 Feb 1;306:120998. doi: 10.1016/j.neuroimage.2024.120998. Epub 2025 Jan 1.
2
Improving EEG Forward Modeling Using High-Resolution Five-Layer BEM-FMM Head Models: Effect on Source Reconstruction Accuracy.
Bioengineering (Basel). 2024 Oct 26;11(11):1071. doi: 10.3390/bioengineering11111071.
3
A survey on integral equations for bioelectric modeling.
Phys Med Biol. 2024 Aug 28;69(17). doi: 10.1088/1361-6560/ad66a9.
4
Global sensitivity of EEG source analysis to tissue conductivity uncertainties.
Front Hum Neurosci. 2024 Mar 12;18:1335212. doi: 10.3389/fnhum.2024.1335212. eCollection 2024.
6
The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement.
Brain Stimul. 2022 May-Jun;15(3):654-663. doi: 10.1016/j.brs.2022.04.009. Epub 2022 Apr 18.
7
Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings.
IEEE Trans Biomed Eng. 2021 Jan;68(1):308-318. doi: 10.1109/TBME.2020.2999271. Epub 2020 Dec 21.
9
Magnetoencephalography in Cognitive Neuroscience: A Primer.
Neuron. 2019 Oct 23;104(2):189-204. doi: 10.1016/j.neuron.2019.07.001.
10
Influence of Head Tissue Conductivity Uncertainties on EEG Dipole Reconstruction.
Front Neurosci. 2019 Jun 4;13:531. doi: 10.3389/fnins.2019.00531. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验