Suppr超能文献

基于快速脑电图/脑磁图边界元素法的高分辨率头部模型正向问题求解

Fast EEG/MEG BEM-based forward problem solution for high-resolution head models.

作者信息

Wartman William A, Ponasso Guillermo Nuñez, Qi Zhen, Haueisen Jens, Maess Burkhard, Knösche Thomas R, Weise Konstantin, Noetscher Gregory M, Raij Tommi, Makaroff Sergey N

机构信息

Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

出版信息

Neuroimage. 2025 Feb 1;306:120998. doi: 10.1016/j.neuroimage.2024.120998. Epub 2025 Jan 1.

Abstract

A fast BEM (boundary element method) based approach is developed to solve an EEG/MEG forward problem for a modern high-resolution head model. The method utilizes a charge-based BEM accelerated by the fast multipole method (BEM-FMM) with an adaptive mesh pre-refinement method (called b-refinement) close to the singular dipole source(s). No costly matrix-filling or direct solution steps typical for the standard BEM are required; the method generates on-skin voltages as well as MEG magnetic fields for high-resolution head models within 90 s after initial model assembly using a regular workstation. The forward method is validated by comparison against an analytical solution on a spherical shell model as well as comparison against a full h-refinement method on realistic 1M facet human head models, both of which yield agreement to within 5 % for the EEG skin potential and MEG magnetic fields. The method is further applied to an EEG source localization (inverse) problem for real human data, and a reasonable source dipole distribution is found.

摘要

开发了一种基于快速边界元法(BEM)的方法,用于求解现代高分辨率头部模型的脑电/脑磁正向问题。该方法采用基于电荷的BEM,并通过快速多极子方法(BEM-FMM)进行加速,同时在靠近奇异偶极子源的位置采用自适应网格预细化方法(称为b细化)。该方法无需像标准BEM那样进行昂贵的矩阵填充或直接求解步骤;使用常规工作站,在初始模型组装后的90秒内,该方法就能为高分辨率头部模型生成头皮电压和脑磁磁场。通过与球壳模型上的解析解进行比较,以及与真实的1M面片人头模型上的完全h细化方法进行比较,对正向方法进行了验证,结果表明,对于脑电皮肤电位和脑磁磁场,两者的一致性均在5%以内。该方法进一步应用于真实人体数据的脑电源定位(逆)问题,并找到了合理的源偶极子分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c739/11941539/0cc77e21f83b/nihms-2051060-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验