Suppr超能文献

生成式帧插值增强了延时显微镜中生物物体的跟踪效果。

Generative frame interpolation enhances tracking of biological objects in time-lapse microscopy.

作者信息

Kaondal Swaraj, Taassob Arsalan, Jeon Sara, Lee Su Hyun, Nuñez Henrique L, Akindipe Bukola A, Lee Hyunsook, Joo So Young, Oliveira Samuel M D, Argüello-Miranda Orlando

机构信息

Department of Plant and Microbial Biology, North Carolina State University, Raleigh, USA.

Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea.

出版信息

bioRxiv. 2025 Mar 26:2025.03.23.644838. doi: 10.1101/2025.03.23.644838.

Abstract

Object tracking in microscopy videos is crucial for understanding biological processes. While existing methods often require fine-tuning tracking algorithms to fit the image dataset, here we explored an alternative paradigm: augmenting the image time-lapse dataset to fit the tracking algorithm. To test this approach, we evaluated whether generative video frame interpolation can augment the temporal resolution of time-lapse microscopy and facilitate object tracking in multiple biological contexts. We systematically compared the capacity of Latent Diffusion Model for Video Frame Interpolation (LDMVFI), Real-time Intermediate Flow Estimation (RIFE), Compression-Driven Frame Interpolation (CDFI), and Frame Interpolation for Large Motion (FILM) to generate synthetic microscopy images derived from interpolating real images. Our testing image time series ranged from fluorescently labeled nuclei to bacteria, yeast, cancer cells, and organoids. We showed that the off-the-shelf frame interpolation algorithms produced bio-realistic image interpolation even without dataset-specific retraining, as judged by high structural image similarity and the capacity to produce segmentations that closely resemble results from real images. Using a simple tracking algorithm based on mask overlap, we confirmed that frame interpolation significantly improved tracking across several datasets without requiring extensive parameter tuning and capturing complex trajectories that were difficult to resolve in the original image time series. Taken together, our findings highlight the potential of generative frame interpolation to improve tracking in time-lapse microscopy across diverse scenarios, suggesting that a generalist tracking algorithm for microscopy could be developed by combining deep learning segmentation models with generative frame interpolation.

摘要

在显微镜视频中进行目标跟踪对于理解生物过程至关重要。虽然现有方法通常需要对跟踪算法进行微调以适应图像数据集,但在这里我们探索了一种替代范式:增强图像延时数据集以适应跟踪算法。为了测试这种方法,我们评估了生成式视频帧插值是否可以提高延时显微镜的时间分辨率,并促进在多种生物背景下的目标跟踪。我们系统地比较了用于视频帧插值的潜在扩散模型(LDMVFI)、实时中间流估计(RIFE)、压缩驱动帧插值(CDFI)和大运动帧插值(FILM)从真实图像插值生成合成显微镜图像的能力。我们的测试图像时间序列涵盖了从荧光标记的细胞核到细菌、酵母、癌细胞和类器官。我们表明,现成的帧插值算法即使在没有特定数据集再训练的情况下也能生成逼真的生物图像插值,这可以通过高结构图像相似度以及生成与真实图像结果非常相似的分割的能力来判断。使用基于掩码重叠的简单跟踪算法,我们证实帧插值在几个数据集中显著改善了跟踪,而无需进行广泛的参数调整,并捕捉了原始图像时间序列中难以解析的复杂轨迹。综上所述,我们的研究结果突出了生成式帧插值在不同场景下改善延时显微镜跟踪的潜力,这表明可以通过将深度学习分割模型与生成式帧插值相结合来开发一种通用的显微镜跟踪算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/782d/11974701/4fdd1c4872bb/nihpp-2025.03.23.644838v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验