Buonocore Francesco, Marchio Sara, Giusepponi Simone, Celino Massimo
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)-C. R. Casaccia, Via Anguillarese 301, 00123 Rome, Italy.
Langmuir. 2025 Apr 22;41(15):9706-9715. doi: 10.1021/acs.langmuir.4c05103. Epub 2025 Apr 8.
Silicon's versatility as a semiconductor renders it indispensable across various domains, including electronics, sensors, and photovoltaics. Modifying hydrogen-terminated silicon surfaces with moiety adsorption offers a method to tailor the material's properties for specific applications. In this study, we employ ab initio density functional theory calculations to explore the energetics of single alkyl, 1-alkenyl, and 1-alkynyl moieties chemisorbed on the hydrogen-terminated silicon (111) surface. We analyze the interfacial dipole induced by Si-C bond formation that determines the Schottky barrier and examine the alignment of the frontier orbital energy levels with the silicon band structure to investigate charge transfer based on the tunneling mechanism. Our findings provide valuable insights into how aliphatic moiety functionalization affects interfacial electronic properties, offering clues for optimizing silicon-based devices.
硅作为半导体的多功能性使其在包括电子、传感器和光伏在内的各个领域都不可或缺。通过部分吸附对氢终止的硅表面进行改性,提供了一种针对特定应用调整材料性能的方法。在本研究中,我们采用从头算密度泛函理论计算来探索单烷基、1-烯基和1-炔基部分化学吸附在氢终止的硅(111)表面的能量学。我们分析了由Si-C键形成引起的界面偶极,它决定了肖特基势垒,并研究了前沿轨道能级与硅能带结构的对齐情况,以基于隧穿机制研究电荷转移。我们的研究结果为脂肪族部分功能化如何影响界面电子性质提供了有价值的见解,为优化硅基器件提供了线索。