Suppr超能文献

利用自然语言处理和电子健康记录在索赔数据中建立治疗中断的验证框架。

Establishing a Validation Framework of Treatment Discontinuation in Claims Data Using Natural Language Processing and Electronic Health Records.

作者信息

Yang Chun-Ting, Ngan Kerry, Kim Dae Hyun, Yang Jie, Liu Jun, Lin Kueiyu Joshua

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Clin Pharmacol Ther. 2025 Apr 8. doi: 10.1002/cpt.3650.

Abstract

Measuring medication discontinuation in claims data primarily relies on the gaps between prescription fills, but such definitions are rarely validated. This study aimed to establish a natural language processing (NLP)-based validation framework to evaluate the performance of claims-based discontinuation algorithms for commonly used medications against NLP-based reference standards from electronic health records (EHRs). A total of 36,656 patients receiving antipsychotic medications (APMs), benzodiazepines (BZDs), warfarin, or direct oral anticoagulants (DOACs) were identified from the Mass General Brigham EHRs in 2007-2020. These EHR data were linked with 97,900 Medicare Part D claims. An NLP-aided chart review was applied to determine medication discontinuation from EHR (reference standard). In claims data, discontinuation was defined by having a prescription gap larger than 15-90 days (claims-based algorithms). Sensitivity, specificity, and predictive values of claims-based algorithms against the reference standard were measured. The sensitivity and specificity of 90-day-gap-based algorithms were 0.46 and 0.79 for haloperidol, 0.41 and 0.85 for atypical APMs, 0.47 and 0.75 for BZDs, 0.33 and 0.80 for warfarin, and 0.38 and 0.87 for DOACs, respectively. The corresponding estimates for 15-day-gap-based algorithms were 0.68 and 0.55 for haloperidol, 0.59 and 0.62 for atypical APMs, 0.71 and 0.45 for BZDs, 0.61 and 0.49 for warfarin, and 0.58 and 0.64 for DOACs, respectively. Positive predictive values were primarily affected by medication discontinuation rates and less by gap lengths. The overall accuracy of claims-based discontinuation algorithms differs by medications. This study demonstrates the scalability and utility of the NLP-based validation framework for multiple medications.

摘要

在索赔数据中衡量药物停用情况主要依赖于处方配药之间的间隔,但此类定义很少经过验证。本研究旨在建立一个基于自然语言处理(NLP)的验证框架,以根据电子健康记录(EHR)中基于NLP的参考标准,评估常用药物基于索赔的停用算法的性能。2007年至2020年期间,从麻省总医院布莱根分院的EHR中识别出总共36,656名接受抗精神病药物(APM)、苯二氮䓬类药物(BZD)、华法林或直接口服抗凝剂(DOAC)治疗的患者。这些EHR数据与97,900份医疗保险D部分索赔相关联。应用NLP辅助的病历审查来确定EHR中的药物停用情况(参考标准)。在索赔数据中,停用定义为处方间隔大于15至90天(基于索赔的算法)。测量了基于索赔的算法相对于参考标准的敏感性、特异性和预测值。基于90天间隔算法的敏感性和特异性,氟哌啶醇分别为0.46和0.79,非典型APM分别为0.41和0.85,BZD分别为0.47和0.75,华法林分别为0.33和0.80,DOAC分别为0.38和0.87。基于15天间隔算法的相应估计值,氟哌啶醇分别为0.68和0.55,非典型APM分别为0.59和0.62,BZD分别为0.71和0.45,华法林分别为0.61和0.49,DOAC分别为0.58和0.64。阳性预测值主要受药物停用率影响,受间隔长度影响较小。基于索赔的停用算法的总体准确性因药物而异。本研究证明了基于NLP的验证框架对多种药物的可扩展性和实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验