Suppr超能文献

生物医学研究数据分析实践入门

A Hands-On Introduction to Data Analytics for Biomedical Research.

作者信息

Pickard Joshua, Sturgess Victoria E, McDonald Katherine O, Rossiter Nicholas, Arnold Kelly B, Shah Yatrik M, Rajapakse Indika, Beard Daniel A

机构信息

Department of Computational Medicine and Bioinformatics, University Michigan, Ann Arbor, MI 48105, USA.

Department of Biomedical Engineering, University Michigan, Ann Arbor, MI 48105, USA.

出版信息

Function (Oxf). 2025 Mar 24;6(2). doi: 10.1093/function/zqaf015.

Abstract

Artificial intelligence (AI) applications are having increasing impacts in the biomedical sciences. Modern AI tools enable uncovering hidden patterns in large datasets, forecasting outcomes, and numerous other applications. Despite the availability and power of these tools, the rapid expansion and complexity of AI applications can be daunting, and there is a conspicuous absence of consensus on their ethical and responsible use. Misapplication of AI can result in invalid, unclear, or biased outcomes, exacerbated by the unfamiliarity of many biomedical researchers with the underlying mathematical and computational principles. To address these challenges, this review and tutorial paper aims to achieve three primary objectives: (1) highlight prevalent data science applications in biomedical research, including data visualization, dimensionality reduction, missing data imputation, and predictive model training and evaluation; (2) provide comprehensible explanations of the mathematical foundations underpinning these methodologies; and (3) guide readers on the effective use and interpretation of software tools for implementing these methods in biomedical contexts. While introductory, this guide covers core principles essential for understanding advanced applications, empowering readers to critically interpret results, assess tools, and explore the potential and limitations of machine learning in their research. Ultimately, this paper serves as a practical foundation for biomedical researchers to confidently navigate the growing intersection of AI and biomedicine.

摘要

人工智能(AI)应用在生物医学科学领域正产生越来越大的影响。现代人工智能工具能够揭示大型数据集中隐藏的模式、预测结果以及进行许多其他应用。尽管这些工具已具备且功能强大,但人工智能应用的快速扩展和复杂性可能令人望而生畏,并且在其道德和负责任使用方面明显缺乏共识。人工智能的误用可能导致无效、不明确或有偏差的结果,许多生物医学研究人员对基础数学和计算原理的不熟悉更是加剧了这一问题。为应对这些挑战,本综述及教程文章旨在实现三个主要目标:(1)突出生物医学研究中普遍存在的数据科学应用,包括数据可视化、降维、缺失数据插补以及预测模型训练与评估;(2)对支撑这些方法的数学基础进行易懂的解释;(3)指导读者在生物医学背景下有效使用和解释用于实施这些方法的软件工具。虽然本指南是入门性质的,但涵盖了理解高级应用所必需的核心原则,使读者有能力批判性地解释结果、评估工具,并探索机器学习在其研究中的潜力和局限性。最终,本文为生物医学研究人员自信地应对人工智能与生物医学日益增长的交叉领域提供了实用基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d1a/11999024/b851818a651c/zqaf015fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验