Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Department of Mathematics, Northeastern University, Boston, MA, USA.
Sci Rep. 2024 Aug 6;14(1):18155. doi: 10.1038/s41598-024-68901-x.
The quick Sequential Organ Failure Assessment (qSOFA) system identifies an individual's risk to progress to poor sepsis-related outcomes using minimal variables. We used Support Vector Machine, Learning Using Concave and Convex Kernels, and Random Forest to predict an increase in qSOFA score using electronic health record (EHR) data, electrocardiograms (ECG), and arterial line signals. We structured physiological signals data in a tensor format and used Canonical Polyadic/Parallel Factors (CP) decomposition for feature reduction. Random Forests trained on ECG data show improved performance after tensor decomposition for predictions in a 6-h time frame (AUROC 0.67 ± 0.06 compared to 0.57 ± 0.08, ). Adding arterial line features can also improve performance (AUROC 0.69 ± 0.07, ), and benefit from tensor decomposition (AUROC 0.71 ± 0.07, ). Adding EHR data features to a tensor-reduced signal model further improves performance (AUROC 0.77 ± 0.06, ). Despite reduction in performance going from an EHR data-informed model to a tensor-reduced waveform data model, the signals-informed model offers distinct advantages. The first is that predictions can be made on a continuous basis in real-time, and second is that these predictions are not limited by the availability of EHR data. Additionally, structuring the waveform features as a tensor conserves structural and temporal information that would otherwise be lost if the data were presented as flat vectors.
快速序贯器官衰竭评估 (qSOFA) 系统使用最少的变量来识别个体进展为不良脓毒症相关结局的风险。我们使用支持向量机、使用凹和凸核的学习以及随机森林来预测电子健康记录 (EHR) 数据、心电图 (ECG) 和动脉线信号中 qSOFA 评分的增加。我们将生理信号数据构建为张量格式,并使用典型多胞形/并行因子 (CP) 分解进行特征减少。在心电图数据上训练的随机森林在张量分解后进行 6 小时预测时表现出更好的性能(AUROC 0.67 ± 0.06 与 0.57 ± 0.08 相比, )。添加动脉线特征也可以提高性能(AUROC 0.69 ± 0.07, ),并且受益于张量分解(AUROC 0.71 ± 0.07, )。将 EHR 数据特征添加到张量减少的信号模型中进一步提高了性能(AUROC 0.77 ± 0.06, )。尽管从 EHR 数据驱动的模型到张量减少的波形数据模型的性能有所降低,但信号驱动的模型具有明显的优势。首先,可以实时连续进行预测,其次,这些预测不受 EHR 数据可用性的限制。此外,将波形特征构建为张量可以保留结构和时间信息,如果数据以平面向量形式呈现,则这些信息将丢失。