Suppr超能文献

BADGER:生物感知可解释差异基因表达排序模型。

BADGER: biologically-aware interpretable differential gene expression ranking model.

作者信息

Kim Hajung, Gim Mogan, Baek Seungheun, Park Soyon, Kim Sunkyu, Kang Jaewoo

机构信息

Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea.

Department of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin 17035, Korea.

出版信息

Bioinform Adv. 2025 Feb 18;5(1):vbaf029. doi: 10.1093/bioadv/vbaf029. eCollection 2025.

Abstract

MOTIVATION

Understanding which genes are significantly affected by drugs is crucial for drug repurposing, as drugs targeting specific pathways in one disease might be effective in another with similar genetic profiles. By analyzing gene expression changes in cells before and after drug treatment, we can identify the genes most impacted by drugs.

RESULTS

The Biologically-Aware Interpretable Differential Gene Expression Ranking (BADGER) model is an interpretable model designed to predict gene expression changes resulting from interactions between cancer cell lines and chemical compounds. The model enhances explainability through integration of prior knowledge about drug targets via pathway information, handles novel cancer cell lines through similarity-based embedding, and employs three attention blocks that mimic the cascading effects of chemical compounds. This model overcomes previous limitations of cell line range and explainability constraints in drug-cell response studies. The model demonstrates superior performance over baselines in both unseen cell and unseen pair split evaluations, showing robust prediction capabilities for untested drug-cell line combinations.

AVAILABILITY AND IMPLEMENTATION

This makes it particularly valuable for drug repurposing scenarios, especially in developing therapeutic plans for new or resistant diseases by leveraging similarities with other diseases. All code and data used in this study are available at https://github.com/dmis-lab/BADGER.git.

摘要

动机

了解哪些基因受药物显著影响对于药物再利用至关重要,因为针对一种疾病特定途径的药物可能对另一种具有相似基因特征的疾病有效。通过分析药物处理前后细胞中的基因表达变化,我们可以识别受药物影响最大的基因。

结果

生物感知可解释差异基因表达排名(BADGER)模型是一种可解释模型,旨在预测癌细胞系与化合物相互作用导致的基因表达变化。该模型通过经由通路信息整合关于药物靶点的先验知识来增强可解释性,通过基于相似性的嵌入处理新的癌细胞系,并采用三个注意力模块来模拟化合物的级联效应。该模型克服了药物 - 细胞反应研究中先前细胞系范围和可解释性限制的问题。在未见过的细胞和未见过的配对拆分评估中,该模型均展示出优于基线的性能,对未经测试的药物 - 细胞系组合表现出强大的预测能力。

可用性与实现方式

这使其在药物再利用场景中特别有价值,尤其是在通过利用与其他疾病的相似性为新疾病或耐药性疾病制定治疗方案时。本研究中使用的所有代码和数据可在https://github.com/dmis-lab/BADGER.git获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/334e/11978390/14f8b6ba0e17/vbaf029f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验