Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0E9, Canada.
Mila, Quebec AI Institute, Montreal, QC H2S 3H1, Canada.
Bioinformatics. 2022 Jul 11;38(14):3609-3620. doi: 10.1093/bioinformatics/btac383.
The increasing number of publicly available databases containing drugs' chemical structures, their response in cell lines, and molecular profiles of the cell lines has garnered attention to the problem of drug response prediction. However, many existing methods do not fully leverage the information that is shared among cell lines and drugs with similar structure. As such, drug similarities in terms of cell line responses and chemical structures could prove to be useful in forming drug representations to improve drug response prediction accuracy.
We present two deep learning approaches, BiG-DRP and BiG-DRP+, for drug response prediction. Our models take advantage of the drugs' chemical structure and the underlying relationships of drugs and cell lines through a bipartite graph and a heterogeneous graph convolutional network that incorporate sensitive and resistant cell line information in forming drug representations. Evaluation of our methods and other state-of-the-art models in different scenarios shows that incorporating this bipartite graph significantly improves the prediction performance. In addition, genes that contribute significantly to the performance of our models also point to important biological processes and signaling pathways. Analysis of predicted drug response of patients' tumors using our model revealed important associations between mutations and drug sensitivity, illustrating the utility of our model in pharmacogenomics studies.
An implementation of the algorithms in Python is provided in https://github.com/ddhostallero/BiG-DRP.
Supplementary data are available at Bioinformatics online.
越来越多的公共数据库包含药物的化学结构、细胞系中的反应以及细胞系的分子谱,这引起了人们对药物反应预测问题的关注。然而,许多现有的方法并没有充分利用细胞系和结构相似的药物之间共享的信息。因此,从细胞系反应和化学结构的角度来看,药物相似性可能有助于形成药物表示,从而提高药物反应预测的准确性。
我们提出了两种用于药物反应预测的深度学习方法,BiG-DRP 和 BiG-DRP+。我们的模型利用了药物的化学结构以及药物和细胞系之间的潜在关系,通过一个二部图和一个异质图卷积网络,将敏感和耐药细胞系的信息纳入药物表示的形成中。在不同场景下对我们的方法和其他最先进的模型进行评估表明,纳入这个二部图显著提高了预测性能。此外,对我们模型性能有重要贡献的基因也指向了重要的生物学过程和信号通路。利用我们的模型分析患者肿瘤的预测药物反应揭示了突变与药物敏感性之间的重要关联,说明了我们的模型在药物基因组学研究中的实用性。
我们在 Python 中的算法实现可在 https://github.com/ddhostallero/BiG-DRP 上获得。
补充数据可在生物信息学在线获得。