He Rong, McDonough Liam, Seitz Liam, Ou Wenhan, Marks Samuel D, Ferreira de Menezes Rafael, Allan-Cole Elizabeth, Luo Hongmei, Toney Michael F, Sprenger Kayla G, Zhou Meng, Tenent Robert C
National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003, United States.
ACS Electrochem. 2024 Dec 4;1(4):494-503. doi: 10.1021/acselectrochem.4c00106. eCollection 2025 Apr 3.
Lithium-ion batteries (LIBs) have been widely employed as energy storage devices in portable electronics and electric vehicles. Many processes occurring at the electrode/electrolyte interphases lead to performance degradation over time and yet remain poorly understood. We demonstrate new methods based on scanning electrochemical microscopy (SECM) to characterize LIB electrolyte oxidation, which is a key process occurring at the cathode/electrolyte interphase. Our technique leverages a combination of feedback mode and generation/collection mode SECM to provide an electrochemical reversal technique like commonly used cyclic voltammetry or rotating-ring disk electrode methods but one potentially more easily applicable at shorter time scales. We use our method to probe the oxidation of LIB electrolyte components at nonintercalating electrodes including Pt and glassy carbon. We study the oxidation of a common commercially used electrolyte, 1.2 M LiPF 30% ethylene carbonate and 70% ethyl methyl carbonate electrolyte (LP58), as well as formulations using only the individual carbonates. Our results indicate that all electrolyte formulations characterized oxidize through multiple processes that are detected at distinct voltages. Some processes generate soluble and reducible products that are detected by the SECM tip electrode and may be consistent with deprotonation of carbonate solvents. However, several other oxidation processes do not appear to generate soluble and reducible species and may be connected to the formation of either nonelectroactive products or of processes only occurring on the substrate electrode surface. This work provides information about the electrochemical oxidation of commonly used carbonate electrolytes for comparison to studies involving potentially more complex processes in the presence of LIB cathode materials.
锂离子电池(LIBs)已被广泛用作便携式电子设备和电动汽车中的储能装置。电极/电解质界面处发生的许多过程会导致性能随时间下降,但人们对此仍知之甚少。我们展示了基于扫描电化学显微镜(SECM)的新方法来表征LIB电解质氧化,这是在阴极/电解质界面发生的关键过程。我们的技术利用反馈模式和产生/收集模式SECM的组合,提供一种类似于常用循环伏安法或旋转环盘电极方法的电化学反转技术,但可能在更短的时间尺度上更易于应用。我们使用我们的方法来探测包括Pt和玻璃碳在内的非嵌入电极上LIB电解质成分的氧化。我们研究了一种常见的商业用电解质,1.2 M LiPF 30%碳酸亚乙酯和70%碳酸甲乙酯电解质(LP58),以及仅使用单一碳酸盐的配方。我们的结果表明,所有表征的电解质配方都通过在不同电压下检测到的多个过程进行氧化。一些过程会产生可溶且可还原的产物,这些产物可被SECM尖端电极检测到,并且可能与碳酸盐溶剂的去质子化一致。然而,其他几个氧化过程似乎不会产生可溶且可还原的物质,可能与非电活性产物的形成或仅在基底电极表面发生的过程有关。这项工作提供了关于常用碳酸盐电解质电化学氧化的信息,以便与涉及LIB阴极材料存在下可能更复杂过程的研究进行比较。