Suppr超能文献

基于强化学习的多机器人系统动态场探索与重建用于环境监测

Reinforcement learning-based dynamic field exploration and reconstruction using multi-robot systems for environmental monitoring.

作者信息

Lu Thinh, Sobti Divyam, Talwar Deepak, Wu Wencen

机构信息

Computer Engineering Department, San Jose State University, San Jose, CA, United States.

出版信息

Front Robot AI. 2025 Mar 25;12:1492526. doi: 10.3389/frobt.2025.1492526. eCollection 2025.

Abstract

In the realm of real-time environmental monitoring and hazard detection, multi-robot systems present a promising solution for exploring and mapping dynamic fields, particularly in scenarios where human intervention poses safety risks. This research introduces a strategy for path planning and control of a group of mobile sensing robots to efficiently explore and reconstruct a dynamic field consisting of multiple non-overlapping diffusion sources. Our approach integrates a reinforcement learning-based path planning algorithm to guide the multi-robot formation in identifying diffusion sources, with a clustering-based method for destination selection once a new source is detected, to enhance coverage and accelerate exploration in unknown environments. Simulation results and real-world laboratory experiments demonstrate the effectiveness of our approach in exploring and reconstructing dynamic fields. This study advances the field of multi-robot systems in environmental monitoring and has practical implications for rescue missions and field explorations.

摘要

在实时环境监测和危险检测领域,多机器人系统为探索和绘制动态区域提供了一种很有前景的解决方案,特别是在人类干预存在安全风险的场景中。本研究介绍了一种针对一组移动传感机器人的路径规划和控制策略,以有效地探索和重建由多个不重叠扩散源组成的动态区域。我们的方法集成了一种基于强化学习的路径规划算法,以指导多机器人编队识别扩散源,并采用一种基于聚类的方法在检测到新源时进行目的地选择,以提高未知环境中的覆盖范围并加速探索。仿真结果和实际实验室实验证明了我们的方法在探索和重建动态区域方面的有效性。这项研究推动了多机器人系统在环境监测领域的发展,对救援任务和野外探索具有实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859d/11975907/c88bcfecb460/frobt-12-1492526-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验