Suppr超能文献

利用深度学习技术,结合超声和钼靶 X 线摄影对乳腺癌无病生存进行预测:一项多中心研究。

Prediction of Disease-Free Survival in Breast Cancer using Deep Learning with Ultrasound and Mammography: A Multicenter Study.

机构信息

Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.

Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.

出版信息

Clin Breast Cancer. 2024 Apr;24(3):215-226. doi: 10.1016/j.clbc.2024.01.005. Epub 2024 Jan 17.

Abstract

BACKGROUND

Breast cancer is a leading cause of cancer morbility and mortality in women. The possibility of overtreatment or inappropriate treatment exists, and methods for evaluating prognosis need to be improved.

MATERIALS AND METHODS

Patients (from January 2013 to December 2018) were recruited and divided into a training group and a testing group. All patients were followed for more than 3 years. Patients were divided into a disease-free group and a recurrence group based on follow up results at 3 years. Ultrasound (US) and mammography (MG) images were collected to establish deep learning models (DLMs) using ResNet50. Clinical data, MG, and US characteristics were collected to select independent prognostic factors using a cox proportional hazards model to establish a clinical model. DLM and independent prognostic factors were combined to establish a combined model.

RESULTS

In total, 1242 patients were included. Independent prognostic factors included age, neoadjuvant chemotherapy, HER2, orientation, blood flow, dubious calcification, and size. We established 5 models: the US DLM, MG DLM, US + MG DLM, clinical and combined model. The combined model using US images, MG images, and pathological, clinical, and radiographic characteristics had the highest predictive performance (AUC = 0.882 in the training group, AUC = 0.739 in the testing group).

CONCLUSION

DLMs based on the combination of US, MG, and clinical data have potential as predictive tools for breast cancer prognosis.

摘要

背景

乳腺癌是女性癌症发病率和死亡率的主要原因。存在过度治疗或治疗不当的可能性,需要改进预后评估方法。

材料与方法

招募了来自 2013 年 1 月至 2018 年 12 月的患者,将其分为训练组和测试组。所有患者随访时间均超过 3 年。根据 3 年随访结果,将患者分为无病组和复发组。收集超声(US)和乳腺 X 线摄影(MG)图像,使用 ResNet50 建立深度学习模型(DLM)。收集临床数据、MG 和 US 特征,使用 Cox 比例风险模型选择独立预后因素,建立临床模型。将 DLM 和独立预后因素相结合,建立联合模型。

结果

共纳入 1242 例患者。独立预后因素包括年龄、新辅助化疗、HER2、方位、血流、可疑钙化和大小。我们建立了 5 种模型:US DLM、MG DLM、US+MG DLM、临床和联合模型。使用 US 图像、MG 图像以及病理、临床和影像学特征的联合模型具有最高的预测性能(训练组 AUC=0.882,测试组 AUC=0.739)。

结论

基于 US、MG 和临床数据的组合的 DLM 具有作为乳腺癌预后预测工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验