Baez Vasquez Jhonattan Frank, Paiva Aislan Esmeraldo, Singh Sajan, Acosta-Beltrán Sherly, Fernandez Alberto Alvarez, Morris Michael A
AMBER Research Centre/School of Chemistry, Trinity College Dublin, Dublin D02W085, Ireland.
ACS Appl Mater Interfaces. 2025 Apr 23;17(16):24654-24664. doi: 10.1021/acsami.5c04225. Epub 2025 Apr 9.
High-performance polymers are pivotal for a wide range of applications due to their excellent mechanical, chemical, and thermal properties. This work introduces, for the first time, a block copolymer (BCP) self-assembly method to modify the surfaces of different high-performance polymers. Using highly ordered poly(styrene--ethylene oxide) (PS--PEO) thin films as templates, metallic oxide nanopillars (AlO, AgO, MgO, CaO, and TiO) with a 20 nm average diameter were fabricated. These were created on high-performance polymer substrates, specifically, polyetheretherketone (PEEK), carbon fiber-reinforced polyetheretherketone (CFPEEK), and ultrahigh molecular weight polyethylene. This method addresses the low chemical activity of these polymeric substrates, offering a cost-effective, scalable solution to produce their surface functionalization. Characterization via atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy validate the structure and composition of the nanostructured surfaces. The significance of BCP self-assembly is emphasized as an effective and versatile approach for the nanoscale tailoring of surface properties in high-performance polymers. This process offers a straightforward method with low technological and energetic costs, paving the way for the extensive surface modification of large areas. The implications of this work extend to various sectors, including biomedical devices, sensors, and electronics, showcasing the broad applicability of this nanoscale tailoring technique.
高性能聚合物因其优异的机械、化学和热性能而在广泛的应用中起着关键作用。这项工作首次引入了一种嵌段共聚物(BCP)自组装方法来修饰不同高性能聚合物的表面。以高度有序的聚(苯乙烯-环氧乙烷)(PS-PEO)薄膜为模板,制备了平均直径为20 nm的金属氧化物纳米柱(AlO、AgO、MgO、CaO和TiO)。这些纳米柱是在高性能聚合物基底上制备的,具体来说,是聚醚醚酮(PEEK)、碳纤维增强聚醚醚酮(CFPEEK)和超高分子量聚乙烯。该方法解决了这些聚合物基底化学活性低的问题,为其表面功能化提供了一种经济高效、可扩展的解决方案。通过原子力显微镜、扫描电子显微镜和X射线光电子能谱进行的表征验证了纳米结构表面的结构和组成。强调了BCP自组装作为一种有效且通用的方法在高性能聚合物表面性质的纳米级定制方面的重要性。该过程提供了一种技术和能量成本低的直接方法,为大面积的广泛表面改性铺平了道路。这项工作的影响延伸到各个领域,包括生物医学设备、传感器和电子学,展示了这种纳米级定制技术的广泛适用性。