Baranowska-Korczyc Anna, Kowalczyk Dorota, Chodkowski Marcin, Sobczak Kamil, Krzyżowska Małgorzata, Cieślak Małgorzata
Department of Chemical Textiles Technologies, Łukasiewicz Research Network─Lodz Institute of Technology, M. Skłodowskiej-Curie Street 9/27, 90-570 Lodz, Poland.
Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
ACS Appl Bio Mater. 2025 Apr 21;8(4):3416-3430. doi: 10.1021/acsabm.5c00173. Epub 2025 Apr 9.
The COVID-19 pandemic has created a need to develop protective textiles that reduce the infection of SARS-CoV-2, mainly via face masks. The key issue in designing protective textiles is the functionalization with antiviral agents. This report presents tin oxide nanoparticles (SnONPs) as a novel, efficient antiviral agent against human coronavirus HCoV 229E due to blocking virus entry, attachment, and penetration into MRC-5 cells and nontoxicity. SnONPs were obtained by sodium stannate hydrolysis and have a 3 nm diameter, a cubic structure, and a zeta potential of -28.8. SnONPs were applied to functionalize a protective face mask made of silk fibroin. Polydopamine was applied to immobilize the particles. SnONPs have a negative potential and enhance silk fabric hydrophobicity, which is crucial for antiviral properties. The mask functionalized with SnONPs reveals very good antiviral properties and antibacterial activity against Gram-positive and -negative bacteria. Silk fabric functionalized with SnONPs retains the silk fibroin β-sheet structure, is nontoxic, noncorrosive to human skin, and reveals high thermophysiological wear comfort.The highest filtration efficiency is obtained for the 3-layered mask (60%), while breathing resistance, sufficient for the FFP3 mask, was achieved for the 1-layered mask (maximum allowable breathing of 100 and 300 Pa, respectively, for 30 L/min and 95 L/min inhale and 300 Pa for an exhale flow rate of 160 L/min). SnONPs can be useful in developing advanced antiviral textile materials to control virus spread and future pandemics.
新冠疫情引发了对开发主要通过口罩来减少严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染的防护纺织品的需求。设计防护纺织品的关键问题是用抗病毒剂进行功能化处理。本报告介绍了氧化锡纳米颗粒(SnONPs),它作为一种新型、高效的抗人类冠状病毒HCoV 229E的抗病毒剂,可阻止病毒进入、附着并穿透MRC-5细胞,且无毒。SnONPs通过锡酸钠水解获得,直径为3纳米,具有立方结构,zeta电位为-28.8。将SnONPs应用于由丝素蛋白制成的防护口罩的功能化处理。使用聚多巴胺来固定这些颗粒。SnONPs具有负电位并增强了丝绸织物的疏水性,这对抗病毒性能至关重要。用SnONPs功能化的口罩显示出非常好的抗病毒性能以及对革兰氏阳性和阴性细菌的抗菌活性。用SnONPs功能化的丝绸织物保留了丝素蛋白β-折叠结构,无毒,对人体皮肤无腐蚀性,并显示出高的热生理穿着舒适度。三层口罩的过滤效率最高(60%),而单层口罩实现了符合FFP3口罩要求的呼吸阻力(对于30升/分钟和95升/分钟的吸气,最大允许呼吸压力分别为100和300帕,呼气流量为160升/分钟时为300帕)。SnONPs可用于开发先进的抗病毒纺织材料,以控制病毒传播和应对未来的大流行。