Ying Zhongfu, Xin Yanmin, Liu Zihuang, Tan Tianxin, Huang Yile, Ding Yingzhe, Hong Xuejun, Li Qiuzhi, Li Chong, Guo Jingyi, Liu Gaoshen, Meng Qi, Zhou Shihe, Li Wenxin, Yao Yao, Xiang Ge, Li Linpeng, Wu Yi, Liu Yang, Mu Miaohui, Ruan Zifeng, Liang Wenxi, Wang Junwei, Wang Yaofeng, Liao Baojian, Liu Yang, Wang Wuming, Lu Gang, Qin Dajiang, Pei Duanqing, Chan Wai-Yee, Liu Xingguo
GMU-GIBH Joint School of Life Sciences, State Key Lab of Respiratory Disease, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
Nat Metab. 2025 Apr 9. doi: 10.1038/s42255-025-01261-6.
The mitochondrial unfolded protein response (UPR), a mitochondria-to-nucleus retrograde pathway that promotes the maintenance of mitochondrial function in response to stress, plays an important role in promoting lifespan extension in Caenorhabditis elegans. However, its role in mammals, including its contributions to development or cell fate decisions, remains largely unexplored. Here, we show that transient UPR activation occurs during somatic reprogramming in mouse embryonic fibroblasts. We observe a c-Myc-dependent, transient decrease in mitochondrial proteolysis, accompanied by UPR activation at the early phase of pluripotency acquisition. UPR impedes the mesenchymal-to-epithelial transition (MET) through c-Jun, thereby inhibiting pluripotency acquisition. Mechanistically, c-Jun enhances the expression of acetyl-CoA metabolic enzymes and reduces acetyl-CoA levels, thereby affecting levels of H3K9Ac, linking mitochondrial signalling to the epigenetic state of the cell and cell fate decisions. c-Jun also decreases the occupancy of H3K9Ac at MET genes, further inhibiting MET. Our findings reveal the crucial role of mitochondrial UPR-modulated MET in pluripotent stem cell plasticity. Additionally, we demonstrate that the UPR promotes cancer cell migration and invasion by enhancing epithelial-to-mesenchymal transition (EMT). Given the crucial role of EMT in tumour metastasis, our findings on the connection between the UPR and EMT have important pathological implications and reveal potential targets for tumour treatment.
线粒体未折叠蛋白反应(UPR)是一种从线粒体到细胞核的逆行信号通路,可促进线粒体功能在应激状态下的维持,在促进秀丽隐杆线虫寿命延长方面发挥重要作用。然而,其在包括对发育或细胞命运决定的贡献在内的哺乳动物中的作用,在很大程度上仍未得到探索。在这里,我们表明在小鼠胚胎成纤维细胞的体细胞重编程过程中会发生短暂的UPR激活。我们观察到在多能性获得的早期阶段,线粒体蛋白水解出现c-Myc依赖性的短暂下降,并伴有UPR激活。UPR通过c-Jun阻碍间充质-上皮转化(MET),从而抑制多能性获得。从机制上讲,c-Jun增强乙酰辅酶A代谢酶的表达并降低乙酰辅酶A水平,从而影响H3K9Ac水平,将线粒体信号传导与细胞的表观遗传状态和细胞命运决定联系起来。c-Jun还降低了MET基因处H3K9Ac的占有率,进一步抑制了MET。我们的研究结果揭示了线粒体UPR调节的MET在多能干细胞可塑性中的关键作用。此外,我们证明UPR通过增强上皮-间充质转化(EMT)促进癌细胞迁移和侵袭。鉴于EMT在肿瘤转移中的关键作用,我们关于UPR与EMT之间联系的研究结果具有重要的病理学意义,并揭示了肿瘤治疗的潜在靶点。