Ochieng Francis Oketch
Department of Pure and Applied Mathematics, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya.
BMC Infect Dis. 2025 Apr 9;25(1):490. doi: 10.1186/s12879-025-10710-2.
Tuberculosis (TB) remains a significant global health challenge, claiming more than 2 million lives annually, predominantly among adults. Existing studies often neglect the environment, reinfection, relapse/reactivation, and model calibration, thus limiting their applicability. This study presents a novel data-driven model that incorporates these factors to analyze the dynamics of TB transmission. Using the next-generation matrix approach, a basic reproduction number ( ) of 1.737266 was calculated, indicating that active TB disease will persist in the human population without robust public health interventions. The model equations were numerically solved using fourth- and fifth-order Runge-Kutta methods. The model was calibrated to the historical TB incidence data for Kenya, spanning 2000 to 2022, using least squares curve fitting. The fitting algorithm yielded a mean absolute error (MAE) of 0.01% when comparing the actual data points with the results of the simulated model. This finding indicates that the proposed mathematical model closely aligns with the recorded TB incidence data. The optimal values of the model parameters were estimated from the fitting algorithm, and future TB transmission dynamics was projected for the next two decades. Key findings indicate that a 10% decrease in transmission rate, while maintaining other parameters constant, would result in a 10% reduction in TB transmission in Kenya. In addition, the incidence of tuberculosis in Kenya is expected to decrease to an estimated 35 cases per 100,000 people by 2045 with sustained efforts in Bacillus Calmette-Guérin (BCG) vaccination programs and public awareness campaigns. BCG vaccination emerges as the most cost-effective strategy to combat TB transmission in Kenya. Policymakers should prioritize investing in BCG vaccination programs to achieve optimal public health outcomes and economic benefits, aligning with Kenya's Vision 2030.
结核病仍然是一项重大的全球卫生挑战,每年夺走超过200万人的生命,主要是成年人。现有研究往往忽视环境、再感染、复发/再激活以及模型校准,因此限制了它们的适用性。本研究提出了一种新的数据驱动模型,该模型纳入了这些因素来分析结核病传播的动态。使用下一代矩阵方法,计算出基本再生数( )为1.737266,这表明如果没有强有力的公共卫生干预措施,活动性结核病将在人群中持续存在。使用四阶和五阶龙格 - 库塔方法对模型方程进行数值求解。该模型通过最小二乘法曲线拟合,根据肯尼亚2000年至2022年的历史结核病发病率数据进行校准。当将实际数据点与模拟模型的结果进行比较时,拟合算法产生的平均绝对误差(MAE)为0.01%。这一发现表明所提出的数学模型与记录的结核病发病率数据紧密吻合。从拟合算法中估计出模型参数的最佳值,并对未来二十年的结核病传播动态进行了预测。主要研究结果表明,在保持其他参数不变的情况下,传播率降低10%将导致肯尼亚结核病传播减少10%。此外,通过在卡介苗(BCG)疫苗接种计划和公众宣传活动中持续努力,预计到2045年肯尼亚的结核病发病率将降至每10万人约35例。卡介苗接种成为肯尼亚对抗结核病传播最具成本效益的策略。政策制定者应优先投资于卡介苗接种计划,以实现最佳的公共卫生成果和经济效益,与肯尼亚的《2030年愿景》保持一致。