Farahani Nasibeh Zanjirani, Aguirre Mateo Alzate, Karlinski Vizentin Vanessa, Enayati Moein, Bos J Martijn, Medina Andredi Pumarejo, Larson Kathryn F, Pasupathy Kalyan S, Scott Christopher G, Zacher April L, Schlechtinger Eduard, Daniels Bruce K, Kaggal Vinod C, Geske Jeffrey B, Pellikka Patricia A, Oh Jae K, Ommen Steve R, Kane Garvan C, Ackerman Michael J, Arruda-Olson Adelaide M
Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN.
Mayo Clin Proc Digit Health. 2024 Sep 3;2(4):564-573. doi: 10.1016/j.mcpdig.2024.08.009. eCollection 2024 Dec.
To develop machine learning tools for automated hypertrophic cardiomyopathy (HCM) case recognition from echocardiographic metrics, aiming to identify HCM from standard echocardiographic data with high performance.
Four different random forest machine learning models were developed using a case-control cohort composed of 5548 patients with HCM and 16,973 controls without HCM, from January 1, 2004, to March 15, 2019. Each patient with HCM was matched to 3 controls by sex, age, and year of echocardiography. Ten-fold crossvalidation was used to train the models to identify HCM. Variables included in the models were demographic characteristics (age, sex, and body surface area) and 16 standard echocardiographic metrics.
The models were differentiated by global, average, individual, or no strain measurements. Area under the receiver operating characteristic curves (area under the curve) ranged from 0.92 to 0.98 for the 4 separate models. Area under the curves of model 2 (using left ventricular global longitudinal strain; 0.97; 95% CI, 0.95-0.98), 3 (using averaged strain; 0.96; 95% CI, 0.94-0.97), and 4 (using 17 individual strains per patient; 0.98; 95% CI, 0.97-0.99) had comparable performance. By comparison, model 1 (no strain data; 0.92; 95% CI, 0.90-0.94) had an inferior area under the curve.
Machine learning tools that analyze echocardiographic metrics identified HCM cases with high performance. Detection of HCM cases improved when strain data was combined with standard echocardiographic metrics.
开发机器学习工具,用于根据超声心动图指标自动识别肥厚型心肌病(HCM)病例,旨在从标准超声心动图数据中高效识别HCM。
使用一个病例对照队列开发了四种不同的随机森林机器学习模型,该队列由5548例HCM患者和16973例无HCM的对照组成,时间跨度为2004年1月1日至2019年3月15日。每例HCM患者按性别、年龄和超声心动图检查年份与3例对照进行匹配。采用十折交叉验证法训练模型以识别HCM。模型中纳入的变量包括人口统计学特征(年龄、性别和体表面积)以及16项标准超声心动图指标。
这些模型根据整体、平均、个体或无应变测量进行区分。4个独立模型的受试者操作特征曲线下面积(曲线下面积)在0.92至0.98之间。模型2(使用左心室整体纵向应变;0.97;95%CI,0.95 - 0.98)、模型3(使用平均应变;0.96;95%CI,0.94 - 0.97)和模型4(使用每位患者17项个体应变;0.98;95%CI,0.97 - 0.99)的曲线下面积具有相似的性能。相比之下,模型1(无应变数据;0.92;95%CI,0.90 - 0.94)的曲线下面积较小。
分析超声心动图指标的机器学习工具能够高效识别HCM病例。当应变数据与标准超声心动图指标相结合时,HCM病例的检测效果得到改善。