Suppr超能文献

项目分析中的机器学习:一个数据驱动的框架和案例研究。

Machine learning in project analytics: a data-driven framework and case study.

机构信息

School of Project Management, The University of Sydney, Level 2, 21 Ross St, Forest Lodge, NSW, 2037, Australia.

出版信息

Sci Rep. 2022 Sep 9;12(1):15252. doi: 10.1038/s41598-022-19728-x.

Abstract

The analytic procedures incorporated to facilitate the delivery of projects are often referred to as project analytics. Existing techniques focus on retrospective reporting and understanding the underlying relationships to make informed decisions. Although machine learning algorithms have been widely used in addressing problems within various contexts (e.g., streamlining the design of construction projects), limited studies have evaluated pre-existing machine learning methods within the delivery of construction projects. Due to this, the current research aims to contribute further to this convergence between artificial intelligence and the execution construction project through the evaluation of a specific set of machine learning algorithms. This study proposes a machine learning-based data-driven research framework for addressing problems related to project analytics. It then illustrates an example of the application of this framework. In this illustration, existing data from an open-source data repository on construction projects and cost overrun frequencies was studied in which several machine learning models (Python's Scikit-learn package) were tested and evaluated. The data consisted of 44 independent variables (from materials to labour and contracting) and one dependent variable (project cost overrun frequency), which has been categorised for processing under several machine learning models. These models include support vector machine, logistic regression, k-nearest neighbour, random forest, stacking (ensemble) model and artificial neural network. Feature selection and evaluation methods, including the Univariate feature selection, Recursive feature elimination, SelectFromModel and confusion matrix, were applied to determine the most accurate prediction model. This study also discusses the generalisability of using the proposed research framework in other research contexts within the field of project management. The proposed framework, its illustration in the context of construction projects and its potential to be adopted in different contexts will significantly contribute to project practitioners, stakeholders and academics in addressing many project-related issues.

摘要

为了促进项目交付而采用的分析程序通常被称为项目分析。现有的技术侧重于回顾性报告和理解潜在的关系,以便做出明智的决策。尽管机器学习算法已被广泛用于解决各种情况下的问题(例如,简化建筑项目的设计),但在建筑项目的交付中,对现有的机器学习方法的评估研究有限。因此,本研究旨在通过评估一组特定的机器学习算法,为人工智能和执行建筑项目之间的这种融合做出进一步贡献。本研究提出了一个基于机器学习的数据驱动研究框架,用于解决与项目分析相关的问题。然后,它说明了该框架的一个应用示例。在这个示例中,研究了来自建筑项目和成本超支频率的开源数据存储库中的现有数据,其中测试和评估了几种机器学习模型(Python 的 Scikit-learn 包)。数据包括 44 个独立变量(从材料到劳动力和承包)和一个因变量(项目成本超支频率),这些变量已分类为在几种机器学习模型下进行处理。这些模型包括支持向量机、逻辑回归、k-最近邻、随机森林、堆叠(集成)模型和人工神经网络。特征选择和评估方法,包括单变量特征选择、递归特征消除、SelectFromModel 和混淆矩阵,被应用于确定最准确的预测模型。本研究还讨论了在项目管理领域的其他研究背景下使用拟议研究框架的通用性。所提出的框架、在建筑项目背景下的说明及其在不同背景下被采用的潜力,将极大地有助于项目从业者、利益相关者和学者解决许多与项目相关的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f42/9463441/235018eeffa4/41598_2022_19728_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验