Suppr超能文献

通过手部运动学分析笔迹清晰度。

Analyzing handwriting legibility through hand kinematics.

作者信息

Babushkin Vahan, Alsuradi Haneen, Al-Khalil Muhamed Osman, Eid Mohamad

机构信息

Applied Interactive Multimedia Lab, Engineering Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.

Tandon School of Engineering, New York University, New York, NY, United States.

出版信息

Front Artif Intell. 2025 Mar 26;8:1426455. doi: 10.3389/frai.2025.1426455. eCollection 2025.

Abstract

INTRODUCTION

Handwriting is a complex skill that requires coordination between human motor system, sensory perception, cognitive processing, memory retrieval, and linguistic proficiency. Various aspects of hand and stylus kinematics can affect the legibility of a handwritten text. Assessing handwriting legibility is challenging due to variations in experts' cultural and academic backgrounds, which introduce subjectivity biases in evaluations.

METHODS

In this paper, we utilize a deep-learning model to analyze kinematic features influencing the legibility of handwriting based on temporal convolutional networks (TCN). Fifty subjects are recruited to complete a 26-word paragraph handwriting task, designed to include all possible orthographic combinations of Arabic characters, during which the hand and stylus movements are recorded. A total of 117 different spatiotemporal features are recorded, and the data collected are used to train the model. Shapley values are used to determine the important hand and stylus kinematics features toward evaluating legibility. Three experts are recruited to label the produced text into different legibility scores. Statistical analysis of the top 6 features is conducted to investigate the differences between features associated with high and low legibility scores.

RESULTS

Although the model trained on stylus kinematics features demonstrates relatively high accuracy (around 76%), where the number of legibility classes can vary between 7 and 8 depending on the expert, the addition of hand kinematics features significantly increases the model accuracy by approximately 10%. Explainability analysis revealed that pressure variability, pen slant (altitude, azimuth), and hand speed components are the most prominent for evaluating legibility across the three experts.

DISCUSSION

The model learns meaningful stylus and hand kinematics features associated with the legibility of handwriting. The hand kinematics features are important for accurate assessment of handwriting legibility. The proposed approach can be used in handwriting learning tools for personalized handwriting skill acquisition as well as for pathology detection and rehabilitation.

摘要

引言

书写是一项复杂的技能,需要人体运动系统、感官知觉、认知处理、记忆检索和语言能力之间的协调配合。手部和手写笔运动学的各个方面都会影响手写文本的清晰度。由于专家的文化和学术背景存在差异,这会在评估中引入主观偏差,因此评估手写清晰度具有挑战性。

方法

在本文中我们利用深度学习模型,基于时间卷积网络(TCN)分析影响手写清晰度的运动学特征。招募了50名受试者完成一项26字段落的手写任务,该任务旨在涵盖阿拉伯字符的所有可能拼写组合,在此过程中记录手部和手写笔的运动。总共记录了117种不同的时空特征,并将收集到的数据用于训练模型。使用Shapley值来确定评估清晰度时重要的手部和手写笔运动学特征。招募了三名专家将生成的文本标记为不同的清晰度分数。对前6个特征进行统计分析,以研究与高清晰度分数和低清晰度分数相关的特征之间的差异。

结果

尽管基于手写笔运动学特征训练的模型显示出相对较高的准确率(约76%),根据专家的不同,清晰度类别数量可能在7到8之间变化,但加入手部运动学特征后,模型准确率显著提高了约10%。可解释性分析表明,压力变化、笔的倾斜度(高度、方位角)和手部速度分量在三位专家评估清晰度时最为突出。

讨论

该模型学习到了与手写清晰度相关的有意义的手写笔和手部运动学特征。手部运动学特征对于准确评估手写清晰度很重要。所提出的方法可用于手写学习工具,以实现个性化手写技能的获取,以及用于病理检测和康复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea89/11979204/afb3333ff055/frai-08-1426455-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验