Suppr超能文献

通过手部运动学分析阿拉伯笔迹风格。

Analyzing Arabic Handwriting Style through Hand Kinematics.

作者信息

Babushkin Vahan, Alsuradi Haneen, Al-Khalil Muhamed Osman, Eid Mohamad

机构信息

Applied Interactive Multimedia Lab, Engineering Division, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates.

Tandon School of Engineering, New York University, New York, NY 11201, USA.

出版信息

Sensors (Basel). 2024 Sep 30;24(19):6357. doi: 10.3390/s24196357.

Abstract

Handwriting style is an important aspect affecting the quality of handwriting. Adhering to one style is crucial for languages that follow cursive orthography and possess multiple handwriting styles, such as Arabic. The majority of available studies analyze Arabic handwriting style from static documents, focusing only on pure styles. In this study, we analyze handwriting samples with mixed styles, pure styles (Ruq'ah and Naskh), and samples without a specific style from dynamic features of the stylus and hand kinematics. We propose a model for classifying handwritten samples into four classes based on adherence to style. The stylus and hand kinematics data were collected from 50 participants who were writing an Arabic text containing all 28 letters and covering most Arabic orthography. The parameter search was conducted to find the best hyperparameters for the model, the optimal sliding window length, and the overlap. The proposed model for style classification achieves an accuracy of 88%. The explainability analysis with Shapley values revealed that hand speed, pressure, and pen slant are among the top 12 important features, with other features contributing nearly equally to style classification. Finally, we explore which features are important for Arabic handwriting style detection.

摘要

书写风格是影响书写质量的一个重要方面。对于遵循草书正字法且有多种书写风格的语言,如阿拉伯语,坚持一种风格至关重要。大多数现有研究从静态文档分析阿拉伯语书写风格,仅关注纯风格。在本研究中,我们从笔和手部运动学的动态特征分析混合风格、纯风格(鲁卡体和纳斯赫体)以及无特定风格的书写样本。我们提出一个基于风格遵循情况将手写样本分类为四类的模型。笔和手部运动学数据是从50名参与者那里收集的,他们书写一段包含所有28个字母且涵盖大多数阿拉伯语正字法的文本。进行参数搜索以找到模型的最佳超参数、最优滑动窗口长度和重叠率。所提出的风格分类模型准确率达到88%。使用沙普利值的可解释性分析表明,书写速度、压力和笔倾斜度是前12个重要特征之一,其他特征对风格分类的贡献几乎相同。最后,我们探究哪些特征对阿拉伯语书写风格检测很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/11478569/e8d31504db78/sensors-24-06357-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验