文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于机器学习的移动平台用于视觉判定5种阴茎疾病病因的开发与性能

The Development and Performance of a Machine-Learning Based Mobile Platform for Visually Determining the Etiology of 5 Penile Diseases.

作者信息

Allan-Blitz Lao-Tzu, Ambepitiya Sithira, Tirupathi Raghavendra, Klausner Jeffrey D

机构信息

Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA.

HeHealth, San Francisco, CA.

出版信息

Mayo Clin Proc Digit Health. 2024 May 1;2(2):280-288. doi: 10.1016/j.mcpdig.2024.04.006. eCollection 2024 Jun.


DOI:10.1016/j.mcpdig.2024.04.006
PMID:40207173
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11975829/
Abstract

OBJECTIVE: To develop a machine-learning visual classification algorithm for penile diseases in order to address disparities in access to sexual health services. PATIENTS AND METHODS: We developed an image data set using original and augmented images for 5 penile diseases: herpes lesions, syphilitic chancres, balanitis, penile cancer, and genital warts. We used a U-Net architecture model for semantic pixel segmentation into background or subject image, an Inception-ResNet version 2 neural architecture to classify each pixel as diseased or nondiseased, and a salience map using GradCAM++. We trained the model on a random 91% sample of the images and evaluated the model on the remaining 9%, assessing recall (or sensitivity), precision, specificity, and F1-score. As of July 1st 2022, the model has been in use via a mobile application platform; we assessed application usage between July and October 1, 2023. RESULTS: Of 239 images in the validation data set, 45 (18.8%) were of genital warts, 43 (18%) were of herpes simplex virus infection (ranging from early vesicles to ulcers), 29 (12.1%) were of penile cancer, 40 (16.7%) were of balanitis, 37 (15.5%) were of syphilitic chancres, and 45 (18.8%) were nondiseased images. The overall accuracy of the model for correctly classifying images was 0.944. There were 2640 unique submissions to the mobile platform; among a random sample (n=437), 271 (62%) were from the United States, 64 (14.6%) from Singapore, 41 (9.4%) from Canada, 40 (9.2%) from the United Kingdom, and 21 (4.8%) from Vietnam. CONCLUSION: We report on the development of a machine-learning model for classifying 5 penile diseases, which exhibited excellent performance.

摘要

目的:开发一种用于阴茎疾病的机器学习视觉分类算法,以解决性健康服务可及性方面的差异。 患者与方法:我们使用5种阴茎疾病的原始图像和增强图像开发了一个图像数据集,这5种疾病为:疱疹病变、梅毒硬下疳、龟头炎、阴茎癌和尖锐湿疣。我们使用U-Net架构模型进行语义像素分割,将图像分为背景或主体图像,使用Inception-ResNet v2神经架构将每个像素分类为患病或未患病,并使用GradCAM++生成显著性图。我们在随机抽取的91%的图像样本上训练模型,并在其余9%的图像上评估模型,评估召回率(或灵敏度)、精确率、特异度和F1分数。截至2022年7月1日,该模型已通过移动应用平台投入使用;我们评估了2023年7月至10月1日期间的应用使用情况。 结果:在验证数据集中的239张图像中,45张(18.8%)为尖锐湿疣,43张(18%)为单纯疱疹病毒感染(从早期水疱到溃疡),29张(12.1%)为阴茎癌,40张(16.7%)为龟头炎,37张(15.5%)为梅毒硬下疳,45张(18.8%)为未患病图像。该模型正确分类图像的总体准确率为0.944。移动平台上有2640次独特提交;在随机样本(n = 437)中,271次(62%)来自美国,64次(14.6%)来自新加坡,41次(9.4%)来自加拿大,40次(9.2%)来自英国,21次(4.8%)来自越南。 结论:我们报告了一种用于分类5种阴茎疾病的机器学习模型的开发情况,该模型表现出优异的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/340e/11975829/d1dcfeab7b38/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/340e/11975829/1f873bced9b6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/340e/11975829/d1dcfeab7b38/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/340e/11975829/1f873bced9b6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/340e/11975829/d1dcfeab7b38/gr2.jpg

相似文献

[1]
The Development and Performance of a Machine-Learning Based Mobile Platform for Visually Determining the Etiology of 5 Penile Diseases.

Mayo Clin Proc Digit Health. 2024-5-1

[2]
Oral epithelial cell segmentation from fluorescent multichannel cytology images using deep learning.

Comput Methods Programs Biomed. 2022-12

[3]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[4]
Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT.

Brain Sci. 2023-2-17

[5]
An adaptive convolution neural network model for tuberculosis detection and diagnosis using semantic segmentation.

Pol J Radiol. 2025-3-14

[6]
The Role of ArtificiaI Intelligence in Brain Tumor Diagnosis: An Evaluation of a Machine Learning Model.

Cureus. 2024-6-1

[7]
An integrated and automated testing approach on Inception Restnet-V3 based on convolutional neural network for leukocytes image classification.

Biomed Tech (Berl). 2022-10-5

[8]
Glaucoma detection and staging from visual field images using machine learning techniques.

PLoS One. 2025-1-17

[9]
MAPGI: Accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning.

Comput Biol Med. 2019-7-10

[10]
A novel Skin lesion prediction and classification technique: ViT-GradCAM.

Skin Res Technol. 2024-9

本文引用的文献

[1]
Global, regional, and national trends of syphilis from 1990 to 2019: the 2019 global burden of disease study.

BMC Public Health. 2023-4-24

[2]
Application of Artificial Intelligence Techniques for Monkeypox: A Systematic Review.

Diagnostics (Basel). 2023-2-21

[3]
Lesbian, gay, bisexual, transgender, queer and intersex (LGBTQI+) healthcare in Singapore: perspectives of non-governmental organisations and clinical year medical students.

Med Educ Online. 2023-12

[4]
Deep Learning in Dermatology: A Systematic Review of Current Approaches, Outcomes, and Limitations.

JID Innov. 2022-8-23

[5]
A Machine-Learning-Based Risk-Prediction Tool for HIV and Sexually Transmitted Infections Acquisition over the Next 12 Months.

J Clin Med. 2022-3-25

[6]
Artificial intelligence and sexual health in the USA.

Lancet Digit Health. 2021-8

[7]
Herpes simplex virus: global infection prevalence and incidence estimates, 2016.

Bull World Health Organ. 2020-5-1

[8]
Artificial Intelligence and Machine Learning for HIV Prevention: Emerging Approaches to Ending the Epidemic.

Curr HIV/AIDS Rep. 2020-6

[9]
A Survey on the Experience of Singaporean Trainees in Obstetrics/Gynecology and Family Medicine of Sexual Problems and Views on Training in Sexual Medicine.

Sex Med. 2020-3

[10]
Human papillomavirus and cervical cancer.

J Obstet Gynaecol. 2020-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索