Liu Runsang, Yang Hui
Complex System Monitoring, Modeling, and Control Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Chaos. 2025 Apr 1;35(4). doi: 10.1063/5.0261019.
Network provides a low-dimensional representation of the heart through a sparse adjacency matrix, which ushers in a new opportunity to conduct cardiac simulation. We discovered that a self-organizing network encodes and resembles complex heart geometry. This, in turn, helps characterize the structure-function relationship of the heart through network theory. However, very little has been done to investigate the simulation of electrical activity on a self-organizing network. Thus, this paper presents a new self-organizing network approach for simulating cardiac electrical dynamics. We formulate and solve reaction-diffusion equations on the self-organizing network to simulate the propagation and turbulent behavior of electrical waves. The proposed methodology is evaluated and validated on both 2D cardiac tissues, consisting of healthy and infarcted cells, and the whole heart. Experimental results show that the proposed approach not only yields a compact network representation that resembles the heart geometry but also provides an effective simulation of spatiotemporal dynamics when benchmarking with traditional finite element method simulations.
网络通过稀疏邻接矩阵提供心脏的低维表示,这为进行心脏模拟带来了新机遇。我们发现自组织网络对复杂的心脏几何结构进行编码且与之相似。这反过来又有助于通过网络理论表征心脏的结构-功能关系。然而,在自组织网络上研究电活动模拟的工作做得很少。因此,本文提出一种用于模拟心脏电动力学的新的自组织网络方法。我们在自组织网络上建立并求解反应扩散方程,以模拟电波的传播和湍流行为。所提出的方法在由健康细胞和梗死细胞组成的二维心脏组织以及整个心脏上进行了评估和验证。实验结果表明,所提出的方法不仅产生了类似于心脏几何结构的紧凑网络表示,而且在与传统有限元方法模拟进行基准测试时,还能有效模拟时空动力学。