Tan Jieling, Wang Jiang-Jing, Zhang Hang-Ming, Zhang Han-Yi, Li Heming, Wang Yu, Zhou Yuxing, Deringer Volker L, Zhang Wei
Center for Alloy Innovation and Design (CAID) State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an 710049 China.
School of Physics Xi'an Jiaotong University Xi'an 710049 China.
Small Sci. 2024 Jun 3;4(9):2400226. doi: 10.1002/smsc.202400226. eCollection 2024 Sep.
Main-group layered binary semiconductors, in particular, the III-VI alloys in the binary Ga-Te system are attracting increasing interest for a range of practical applications. The III-VI semiconductor, monoclinic gallium monotelluride (m-GaTe), has been recently used in high-sensitivity photodetectors/phototransistors and electronic memory applications due to its anisotropic properties yielding superior optical and electrical performance. Despite these applications, the origin of such anisotropy, namely the complex structural and bonding environments in GaTe nanostructures remain to be fully understood. In the present work, a comprehensive atomic-scale characterization of m-GaTe is reported by element-resolved atomic-scale microscopy experiments, enabling a direct measure of the in-plane anisotropy at the sub-Angstrom level. It is shown that these experimental images compare well with the results of first-principles modeling. Quantum-chemical bonding analyses provide a detailed picture of the atomic neighbor interactions within the layers, revealing that vertical Ga-Ga homopolar bonds get stronger when they are distorted and rotated, inducing the strong in-plane anisotropy. Beyond GaTe, using a systematic screening over the Materials Project database, the four additional low-symmetric layered crystals with similar distorted tetrahedral patterns are identified, indicating that the homopolar-bond-induced anisotropy is a more generic feature in these layered van der Waals (vdW) materials.
主族层状二元半导体,特别是二元Ga-Te体系中的III-VI族合金,因其在一系列实际应用中的潜力而受到越来越多的关注。III-VI族半导体单斜晶系一碲化镓(m-GaTe),由于其各向异性带来卓越的光学和电学性能,最近已被用于高灵敏度光电探测器/光电晶体管以及电子存储应用中。尽管有这些应用,但这种各向异性的起源,即GaTe纳米结构中复杂的结构和键合环境仍有待充分理解。在本工作中,通过元素分辨原子尺度显微镜实验报道了对m-GaTe的全面原子尺度表征,从而能够在亚埃尺度上直接测量面内各向异性。结果表明,这些实验图像与第一性原理建模结果吻合良好。量子化学键分析提供了层内原子间相互作用的详细图景,揭示了垂直的Ga-Ga同极键在扭曲和旋转时会变强,从而导致强烈的面内各向异性。除了GaTe,通过对材料项目数据库进行系统筛选,还确定了另外四种具有相似扭曲四面体图案的低对称层状晶体,这表明同极键诱导的各向异性是这些层状范德华(vdW)材料中更普遍的特征。