Physics and Chemistry of Nanostructures, Ghent University, 9000 Ghent, Belgium.
Center for Nano and Biophotonics, Ghent University, 9000 Ghent, Belgium.
J Am Chem Soc. 2020 Sep 16;142(37):15627-15637. doi: 10.1021/jacs.0c05082. Epub 2020 Aug 31.
Nanocrystals are a state-of-matter in the border area between molecules and bulk materials. Unlike bulk materials, nanocrystals have size-dependent properties, yet the question remains whether nanocrystal properties can be analyzed, understood, and controlled with atomic precision, a key characteristic of molecules. Acknowledging the inclination of nanocrystals to form defect structures, we first outline the prospects of atomically precise analysis. A broad spectrum of analytical methods has become available over the last five years, such that for heterogeneous nanocrystal ensembles, a single, can be determined to explore structure-property relations. Atomically precise synthesis, on the other hand, remains an outstanding challenge that may well face fundamental limitations. However, to amplify properties and prepare nanocrystals for specific applications, full atomic precision may not be needed. Examples of an approach, focusing on exact thickness or facet control, exist and can inspire scientists to explore atomic precision in nanocrystal research further.
纳米晶体是介于分子和体材料之间的物质状态。与体材料不同,纳米晶体具有尺寸依赖性的性质,但问题仍然是,纳米晶体的性质是否可以用原子精度来分析、理解和控制,而这是分子的一个关键特征。鉴于纳米晶体倾向于形成缺陷结构,我们首先概述了原子精度分析的前景。在过去的五年中,已经出现了广泛的分析方法,例如,对于非均相纳米晶体混合物,可以确定单个晶体来探索结构-性质关系。另一方面,原子精度的合成仍然是一个悬而未决的挑战,可能会面临根本的限制。然而,为了放大性质并为特定应用制备纳米晶体,可能并不需要完全的原子精度。存在专注于精确厚度或晶面控制的方法示例,这可以启发科学家进一步探索纳米晶体研究中的原子精度。