Tian Xuezeng, Kim Dennis S, Yang Shize, Ciccarino Christopher J, Gong Yongji, Yang Yongsoo, Yang Yao, Duschatko Blake, Yuan Yakun, Ajayan Pulickel M, Idrobo Juan Carlos, Narang Prineha, Miao Jianwei
Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, USA.
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Nat Mater. 2020 Aug;19(8):867-873. doi: 10.1038/s41563-020-0636-5. Epub 2020 Mar 9.
The electronic, optical and chemical properties of two-dimensional transition metal dichalcogenides strongly depend on their three-dimensional atomic structure and crystal defects. Using Re-doped MoS as a model system, here we present scanning atomic electron tomography as a method to determine three-dimensional atomic positions as well as positions of crystal defects such as dopants, vacancies and ripples with a precision down to 4 pm. We measure the three-dimensional bond distortion and local strain tensor induced by single dopants. By directly providing these experimental three-dimensional atomic coordinates to density functional theory, we obtain more accurate electronic band structures than derived from conventional density functional theory calculations that relies on relaxed three-dimensional atomic coordinates. We anticipate that scanning atomic electron tomography not only will be generally applicable to determine the three-dimensional atomic coordinates of two-dimensional materials, but also will enable ab initio calculations to better predict the physical, chemical and electronic properties of these materials.
二维过渡金属二硫属化物的电子、光学和化学性质强烈依赖于其三维原子结构和晶体缺陷。以铼掺杂的二硫化钼作为模型体系,我们在此展示扫描原子电子断层成像技术,该技术可用于确定三维原子位置以及诸如掺杂剂、空位和波纹等晶体缺陷的位置,精度可达4皮米。我们测量了单个掺杂剂引起的三维键畸变和局部应变张量。通过将这些实验得到的三维原子坐标直接提供给密度泛函理论,我们获得了比基于传统密度泛函理论计算(依赖于弛豫后的三维原子坐标)更精确的电子能带结构。我们预计,扫描原子电子断层成像技术不仅将普遍适用于确定二维材料的三维原子坐标,还将使从头算能够更好地预测这些材料的物理、化学和电子性质。