Quispe Cohaila Alberto Bacilio, Fora Quispe Gabriela de Lourdes, Lanchipa Ramos Wilson Orlando, Cáceda Quiroz César Julio, Tamayo Calderón Rocío María, Medina Salas Jesús Plácido, Rajendran Saravanan, Sacari Sacari Elisban Juani
Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Avenida Miraflores S/N, Ciudad Universitaria, Tacna 23003, Peru.
Laboratorio de Generación y Almacenamiento de Hidrogeno, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Avenida Miraflores S/N, Ciudad Universitaria, Tacna 23003, Peru.
Nanomaterials (Basel). 2025 Mar 26;15(7):501. doi: 10.3390/nano15070501.
This study presents a sustainable and scalable biosynthesis method for zinc oxide (ZnO) nanoparticles using , focusing on their application in photocatalytic cyanide degradation in aqueous solutions. The bacterial strain was molecularly identified through 16S rRNA gene sequencing and phylogenetic analysis. The optimized biosynthesis process yielded crystalline ZnO nanoparticles in the zincite phase with an average size of 21.87 ± 5.84 nm and a specific surface area of 27.02 ± 0.13 m/g. Comprehensive characterization confirmed the formation of high-purity hexagonal ZnO (space group P63mc) with a bandgap of 3.20 eV. Photocatalytic tests under UV irradiation demonstrated efficient concentration-dependent cyanide degradation, achieving 75.5% removal at 100 ppm and 65.8% at 500 ppm within 180 min using 1.0 g/L ZnO loading. The degradation kinetics followed a pseudo-first-order model with rate constants ranging from 6.64 × 10 to 3.98 × 10 min. The enhanced photocatalytic performance is attributed to the optimal crystallite size, high surface area, and surface defects identified through a microscopic analysis. These results establish biosynthesized ZnO nanoparticles as promising eco-friendly photocatalysts for industrial wastewater treatment.
本研究提出了一种可持续且可扩展的利用[具体内容缺失]生物合成氧化锌(ZnO)纳米颗粒的方法,重点关注其在水溶液中光催化降解氰化物的应用。通过16S rRNA基因测序和系统发育分析对该细菌菌株进行了分子鉴定。优化后的生物合成过程产生了纤锌矿相的结晶ZnO纳米颗粒,平均尺寸为21.87±5.84 nm,比表面积为27.02±0.13 m/g。综合表征证实形成了高纯度的六方ZnO(空间群P63mc),带隙为3.20 eV。紫外光照射下的光催化测试表明,氰化物降解具有高效的浓度依赖性,在1.0 g/L ZnO负载量下,180分钟内100 ppm时的去除率达到75.5%,500 ppm时达到65.8%。降解动力学遵循伪一级模型,速率常数范围为6.64×10至3.98×10 min。通过微观分析确定,增强的光催化性能归因于最佳的微晶尺寸、高表面积和表面缺陷。这些结果表明,生物合成的ZnO纳米颗粒是用于工业废水处理的有前景的环保型光催化剂。