Suppr超能文献

用于优化生物力学性能的线圈增强多层血管移植物的先进制造技术。

Advanced manufacturing of coil-reinforced multilayer vascular grafts to optimize biomechanical performance.

作者信息

Robinson Andrew, Jiang David, Nkansah Abbey, Duran Juan S Herrera, Leung Jonathan, Laude Madeline, Craig John, Guo Leopold, Timmins Lucas, Cosgriff-Hernandez Elizabeth

机构信息

Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.

Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.

出版信息

Acta Biomater. 2025 May 15;198:281-290. doi: 10.1016/j.actbio.2025.04.020. Epub 2025 Apr 9.

Abstract

Small diameter vascular grafts require a complex balance of biomechanical properties to achieve target burst pressure, arterial compliance-matching, and kink resistance to prevent failure. Iterative design of our multilayer vascular grafts was previously used to achieve high compliance while retaining the requisite burst pressure and suture retention strength for clinical use. To impart kink resistance, a custom 3D solution printer was used to add a polymeric coil to the electrospun polyurethane graft to support the graft during bending. The addition of this reinforcing coil increased kink resistance but reduced compliance. A matrix of grafts were fabricated and tested to establish key structure-property relationships between coil parameters (spacing, diameter, modulus) and biomechanical properties (compliance, kink radius). A successful graft design was identified with a compliance similar to saphenous vein grafts (4.1 ± 0.4 %/mmHgx10) while maintaining a kink resistance comparable to clinically used synthetic grafts. To explore graft combinations that could increase graft compliance to match arterial values while retaining this kink resistance, finite element (FE) models of compliance and kink radius that simulated experiment testing were used. The FE-predicted graft compliance agreed well with experimental values. Although the kink model over-predicted the experimental kink radius values, key trends between graft parameters and kink resistance were reproduced. As an initial proof-of-concept, the validated models were then utilized to parse through a targeted graft design space. Although this initial parameter range tested did not yield a graft that improved upon the previous balance of graft properties, this combination of advanced manufacturing and computational framework paves the way for future model-driven design to further optimize graft performance. STATEMENT OF SIGNIFICANCE: The development of a small-diameter vascular graft requires a balance of key biomechanical properties to prevent failure. To impart kink resistance, a polymeric coil was applied. A matrix of grafts was tested to establish structure-property relationships between coil parameters and biomechanical properties. A successful graft design was identified with a compliance similar to saphenous vein grafts and kink resistance within range of clinically grafts. Finite element models for compliance and kink resistance were developed to optimize graft performance. The validated models were utilized to parse a targeted design space. Although this initial range did not yield a graft that improved upon the previous graft properties, this combination of advanced manufacturing and computational framework paves the way for future model-driven design.

摘要

小直径血管移植物需要生物力学性能的复杂平衡,以实现目标爆破压力、动脉顺应性匹配和抗扭结能力,从而防止移植物失效。我们之前采用多层血管移植物的迭代设计来实现高顺应性,同时保留临床使用所需的爆破压力和缝线保留强度。为了赋予抗扭结能力,使用定制的3D溶液打印机在电纺聚氨酯移植物上添加聚合物线圈,以在弯曲过程中支撑移植物。这种增强线圈的添加增加了抗扭结能力,但降低了顺应性。制造并测试了一系列移植物,以建立线圈参数(间距、直径、模量)与生物力学性能(顺应性、扭结半径)之间的关键结构-性能关系。确定了一种成功的移植物设计,其顺应性与大隐静脉移植物相似(4.1±0.4%/mmHg×10),同时保持与临床使用的合成移植物相当的抗扭结能力。为了探索能够增加移植物顺应性以匹配动脉值同时保持这种抗扭结能力的移植物组合,使用了模拟实验测试的顺应性和扭结半径的有限元(FE)模型。有限元预测的移植物顺应性与实验值吻合良好。虽然扭结模型高估了实验扭结半径值,但再现了移植物参数与抗扭结能力之间的关键趋势。作为初步的概念验证,然后利用经过验证的模型在目标移植物设计空间中进行分析。虽然最初测试的这个参数范围没有产生一种能在先前移植物性能平衡基础上有所改进的移植物,但这种先进制造与计算框架的结合为未来模型驱动的设计进一步优化移植物性能铺平了道路。

重要性声明

小直径血管移植物的开发需要关键生物力学性能的平衡以防止失效。为了赋予抗扭结能力,应用了聚合物线圈。测试了一系列移植物以建立线圈参数与生物力学性能之间的结构-性能关系。确定了一种成功的移植物设计,其顺应性与大隐静脉移植物相似,抗扭结能力在临床移植物范围内。开发了顺应性和抗扭结能力的有限元模型以优化移植物性能。利用经过验证的模型在目标设计空间中进行分析。虽然这个初始范围没有产生一种能在先前移植物性能基础上有所改进的移植物,但这种先进制造与计算框架的结合为未来模型驱动的设计铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验