Suppr超能文献

一种优化合成血管移植物力学行为的计算框架。

A computational framework to optimize the mechanical behavior of synthetic vascular grafts.

作者信息

Jiang David, Robinson Andrew J, Nkansah Abbey, Leung Jonathan, Guo Leopold, Maas Steve A, Weiss Jeffrey A, Cosgriff-Hernandez Elizabeth M, Timmins Lucas H

机构信息

Department of Biomedical Engineering, The University of Utah, 36 S Wasatch Dr, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St, College Station, TX, 77843, USA.

Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street, Austin, TX, 78712, USA.

出版信息

J Mech Behav Biomed Mater. 2025 Mar;163:106847. doi: 10.1016/j.jmbbm.2024.106847. Epub 2024 Dec 4.

Abstract

The failure of synthetic small-diameter vascular grafts has been attributed to a mismatch in the compliance between the graft and native artery, driving mechanisms that promote thrombosis and neointimal hyperplasia. Additionally, the buckling of grafts results in large deformations that can lead to device failure. Although design features can be added to lessen the buckling potential (e.g., reinforcing coil), the addition is detrimental to decreasing compliance. Herein, we developed a novel finite element (FE) framework to inform vascular graft design by evaluating compliance and resistance to buckling. A batch-processing scheme iterated across the multi-dimensional design parameter space, which included three parameters: coil thickness, modulus, and spacing - generating 100 unique designs. FE models were created for each coil-reinforced graft design to simulate pressurization, axial buckling, and bent buckling, and results were analyzed to quantify compliance, buckling load, and kink radius, respectively. Validation of the FE models demonstrated that model predictions agreed with experimental observations for compliance (r = 0.99), buckling load (r = 0.89), and kink resistance (r = 0.97). Model predictions demonstrated a broad range of values for compliance (1.1-7.9 %/mmHg × 10), buckling load (0.28-0.84 N), and kink radius (6-10 mm) across the design parameter space. Subsequently, data for each design parameter combination were optimized (i.e., minimized) to identify candidate graft designs with promising mechanical properties. Our model-directed framework successfully elucidated the complex mechanical determinants of graft performance, established structure-property relationships, and identified vascular graft designs with optimal mechanical properties, potentially improving clinical outcomes by addressing device failure.

摘要

合成小口径血管移植物的失效归因于移植物与天然动脉之间顺应性的不匹配,这推动了促进血栓形成和内膜增生的机制。此外,移植物的屈曲会导致大变形,进而导致装置失效。尽管可以添加设计特征来降低屈曲可能性(例如增强线圈),但这种添加不利于降低顺应性。在此,我们开发了一种新颖的有限元(FE)框架,通过评估顺应性和抗屈曲性来指导血管移植物设计。一种批处理方案在多维设计参数空间中迭代,该空间包括三个参数:线圈厚度、模量和间距 - 生成100种独特设计。为每个线圈增强移植物设计创建FE模型,以模拟加压、轴向屈曲和弯曲屈曲,并分别分析结果以量化顺应性、屈曲载荷和扭结半径。FE模型的验证表明,模型预测与顺应性(r = 0.99)、屈曲载荷(r = 0.89)和抗扭结性(r = 0.97)的实验观察结果一致。模型预测表明,在设计参数空间中,顺应性(1.1 - 7.9 %/mmHg × 10)、屈曲载荷(0.28 - 0.84 N)和扭结半径(6 - 10 mm)的值范围很广。随后,对每个设计参数组合的数据进行优化(即最小化),以识别具有良好机械性能的候选移植物设计。我们的模型导向框架成功阐明了移植物性能的复杂机械决定因素,建立了结构 - 属性关系,并识别了具有最佳机械性能的血管移植物设计,有可能通过解决装置失效问题来改善临床结果。

相似文献

1
A computational framework to optimize the mechanical behavior of synthetic vascular grafts.
J Mech Behav Biomed Mater. 2025 Mar;163:106847. doi: 10.1016/j.jmbbm.2024.106847. Epub 2024 Dec 4.
2
A Computational Framework to Optimize the Mechanical Behavior of Synthetic Vascular Grafts.
bioRxiv. 2024 Sep 7:2024.09.05.608688. doi: 10.1101/2024.09.05.608688.
3
Advanced manufacturing of coil-reinforced multilayer vascular grafts to optimize biomechanical performance.
Acta Biomater. 2025 May 15;198:281-290. doi: 10.1016/j.actbio.2025.04.020. Epub 2025 Apr 9.
4
5
Mechanical analysis of a prototype of small diameter vascular prosthesis: numerical simulations.
Comput Biol Med. 2003 Jan;33(1):65-75. doi: 10.1016/s0010-4825(02)00059-8.
6
Electrospun vascular grafts with improved compliance matching to native vessels.
J Biomed Mater Res B Appl Biomater. 2015 Feb;103(2):313-23. doi: 10.1002/jbm.b.33201. Epub 2014 May 21.
7
Mechanical characterization and torsional buckling of pediatric cardiovascular materials.
Biomech Model Mechanobiol. 2024 Jun;23(3):845-860. doi: 10.1007/s10237-023-01809-z. Epub 2024 Feb 15.
8
Stress reduction by geometric compliance matching at vascular graft anastomoses.
Ann Biomed Eng. 1997 Sep-Oct;25(5):874-81. doi: 10.1007/BF02684172.
10
The mechanical behavior of vascular grafts: a review.
J Biomater Appl. 2001 Jan;15(3):241-78. doi: 10.1106/NA5T-J57A-JTDD-FD04.

引用本文的文献

1

本文引用的文献

1
The biomechanics and prevention of vein graft failure in coronary revascularization.
Vessel Plus. 2023;7. doi: 10.20517/2574-1209.2023.97. Epub 2023 Dec 14.
2
Hemodynamics and Wall Mechanics of Vascular Graft Failure.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
3
Influence of material parameter variability on the predicted coronary artery biomechanical environment via uncertainty quantification.
Biomech Model Mechanobiol. 2024 Jun;23(3):927-940. doi: 10.1007/s10237-023-01814-2. Epub 2024 Feb 15.
4
Interpenetrating network design of bioactive hydrogel coatings with enhanced damage resistance.
J Mater Chem B. 2023 Jun 21;11(24):5416-5428. doi: 10.1039/d2tb02825e.
5
Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia.
ACS Omega. 2022 Jun 21;7(26):22125-22148. doi: 10.1021/acsomega.2c01740. eCollection 2022 Jul 5.
6
Model-Directed Design of Tissue Engineering Scaffolds.
ACS Biomater Sci Eng. 2022 Nov 14;8(11):4622-4624. doi: 10.1021/acsbiomaterials.1c01386. Epub 2022 Mar 23.
7
Anisotropic elastic behavior of a hydrogel-coated electrospun polyurethane: Suitability for heart valve leaflets.
J Mech Behav Biomed Mater. 2022 Jan;125:104877. doi: 10.1016/j.jmbbm.2021.104877. Epub 2021 Oct 14.
8
In-vivo assessment of a tissue engineered vascular graft computationally optimized for target vessel compliance.
Acta Biomater. 2021 Mar 15;123:298-311. doi: 10.1016/j.actbio.2020.12.058. Epub 2021 Jan 20.
9
A finite element investigation on design parameters of bare and polymer-covered self-expanding wire braided stents.
J Mech Behav Biomed Mater. 2021 Mar;115:104305. doi: 10.1016/j.jmbbm.2020.104305. Epub 2021 Jan 7.
10
Current understanding of intimal hyperplasia and effect of compliance in synthetic small diameter vascular grafts.
Biomater Sci. 2020 Aug 21;8(16):4383-4395. doi: 10.1039/d0bm00226g. Epub 2020 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验