Suppr超能文献

基于修复生成对抗网络的增强病理学图像质量

Enhanced Pathology Image Quality with Restore-Generative Adversarial Network.

机构信息

Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.

Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.

出版信息

Am J Pathol. 2023 Apr;193(4):404-416. doi: 10.1016/j.ajpath.2022.12.011. Epub 2023 Jan 18.

Abstract

Whole slide imaging is becoming a routine procedure in clinical diagnosis. Advanced image analysis techniques have been developed to assist pathologists in disease diagnosis, staging, subtype classification, and risk stratification. Recently, deep learning algorithms have achieved state-of-the-art performances in various imaging analysis tasks, including tumor region segmentation, nuclei detection, and disease classification. However, widespread clinical use of these algorithms is hampered by their performances often degrading due to image quality issues commonly seen in real-world pathology imaging data such as low resolution, blurring regions, and staining variation. Restore-Generative Adversarial Network (GAN), a deep learning model, was developed to improve the imaging qualities by restoring blurred regions, enhancing low resolution, and normalizing staining colors. The results demonstrate that Restore-GAN can significantly improve image quality, which leads to improved model robustness and performance for existing deep learning algorithms in pathology image analysis. Restore-GAN has the potential to be used to facilitate the applications of deep learning models in digital pathology analyses.

摘要

全 slides 成像正成为临床诊断中的常规程序。先进的图像分析技术已经被开发出来,以协助病理学家进行疾病诊断、分期、亚型分类和风险分层。最近,深度学习算法在各种成像分析任务中取得了最先进的性能,包括肿瘤区域分割、核检测和疾病分类。然而,由于常见于实际病理成像数据中的图像质量问题(如低分辨率、模糊区域和染色变化),这些算法的广泛临床应用受到阻碍。Restore-Generative Adversarial Network (GAN) 是一种深度学习模型,用于通过恢复模糊区域、增强低分辨率和标准化染色颜色来提高成像质量。结果表明,Restore-GAN 可以显著提高图像质量,从而提高现有深度学习算法在病理图像分析中的模型稳健性和性能。Restore-GAN 有可能被用于促进深度学习模型在数字病理学分析中的应用。

相似文献

4
Generative Adversarial Networks in Medical Image Processing.生成对抗网络在医学图像处理中的应用。
Curr Pharm Des. 2021;27(15):1856-1868. doi: 10.2174/1381612826666201125110710.
6
Generative modeling for renal microanatomy.肾脏微观解剖结构的生成式建模
Proc SPIE Int Soc Opt Eng. 2020 Feb;11320. doi: 10.1117/12.2549891. Epub 2020 Mar 16.
8
Pathology Image Analysis Using Segmentation Deep Learning Algorithms.基于分割深度学习算法的病理学图像分析。
Am J Pathol. 2019 Sep;189(9):1686-1698. doi: 10.1016/j.ajpath.2019.05.007. Epub 2019 Jun 11.

引用本文的文献

4
Rethinking Histology Slide Digitization Workflows for Low-Resource Settings.重新思考低资源环境下的组织学切片数字化工作流程
Med Image Comput Comput Assist Interv. 2024 Oct;15004:427-436. doi: 10.1007/978-3-031-72083-3_40. Epub 2024 Oct 14.

本文引用的文献

2
GANs for medical image analysis.生成对抗网络在医学图像分析中的应用。
Artif Intell Med. 2020 Sep;109:101938. doi: 10.1016/j.artmed.2020.101938. Epub 2020 Aug 9.
4
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
6
Deep learning-based point-scanning super-resolution imaging.基于深度学习的点扫描超分辨率成像。
Nat Methods. 2021 Apr;18(4):406-416. doi: 10.1038/s41592-021-01080-z. Epub 2021 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验